Ribozymes are ideal model systems for the vast number of non-protein coding RNAs found in all domains of life, since they have an easily detectable biological function - catalysis. They also are of high biological and biotechnological relevance in their own right for their roles in the processing and regulation of genetic information. Yet, a quarter century after their discovery, our understanding of catalysis by ribozymes still pales compared to that of catalysis by protein enzymes. Over the last two funding cycles, the PI's group has made substantial contributions to our understanding of the folding and mechanism of the class of small ribozymes. All five members of this class were investigated to varying degrees, with particular focus on the hammerhead and hepatitis delta virus (HDV) ribozymes. Several important discoveries were also made on the hairpin ribozyme as a particularly intriguing model system, on which we will follow up during the current funding period, bringing to bear our signature integration of biophysical and biochemical tools.
In Specific Aim 1, we will test the hypothesis that the persistent folding heterogeneity of the hairpin ribozyme, observed at the single molecule level, is caused by slow repuckering of specific nucleotide sugars. Similar folding heterogeneity of chemically identical isomers has been observed for a number of RNAs when (re)folded in vitro, but still lacks a molecular explanation. We have recently succeeded in avoiding this heterogeneity when natively purifying the RNA directly from an in vitro transcription reaction, paving the way for investigating the molecular basis of folding heterogeneity in the hairpin ribozyme by a combination of single molecule fluorescence resonance energy transfer (smFRET), footprinting, and molecular dynamics (MD) simulations.
In Specific Aim 2, in collaboration with Jiri Sponer, a computational scientist and long-standing collaborator, and Joseph Wedekind, an X-ray crystallographer, we will test the hypothesis that a network of global molecular motions in the hairpin ribozyme has an impact on those local molecular motions that lead to catalysis. Such a linkage has been suggested for protein enzymes, but has not been rigorously tested for any ribozyme. To this end, we will introduce site-specific modifications into the hairpin ribozyme and probe, using a combination of enzymology, smFRET, X-ray crystallography, and MD simulation, the impact of each of these modifications on local and global structure, dynamics, and function.
In Specific Aim 3, we will test a set of specific mechanistic proposals for the role of A38 and water in catalysis of the hairpin ribozyme.
This aim follows up on our previous observation that a judiciously placed A38 residue is flanked in the solvent- protected catalytic core by several tightly bound water molecules. We will pursue a broadly sampled QM/MM treatment of the catalytic reaction in collaboration with Jiri Sponer and Joseph Wedekind, as well as quantum chemist Michal Otyepka. We anticipate that results from these three Specific Aims will significantly deepen our understanding of the biological function of non-coding RNAs in general.

Public Health Relevance

Ribozymes are ideal model systems for the vast number of non-protein coding RNAs found in all domains of life, since they have an easily detectable biological function - catalysis. They also are of high biological and biotechnological relevance in their own right for their roles in the processing and regulation of genetic information. In this project renewal, three enigmatic hallmarks of a small model ribozyme, the hairpin ribozyme, will be mechanistically dissected to deepen our understanding of biologically relevant non-coding RNAs in general.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM062357-13
Application #
8693617
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lewis, Catherine D
Project Start
2001-01-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Johnson-Buck, Alexander; Li, Jieming; Tewari, Muneesh et al. (2018) A guide to nucleic acid detection by single-molecule kinetic fingerprinting. Methods :
Daher, May; Widom, Julia R; Tay, Wendy et al. (2018) Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding. J Mol Biol 430:509-523
Ray, Sujay; Widom, Julia R; Walter, Nils G (2018) Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 118:4120-4155
Michelini, Flavia; Pitchiaya, Sethuramasundaram; Vitelli, Valerio et al. (2017) Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19:1400-1411
Pitchiaya, Sethuramasundaram; Heinicke, Laurie A; Park, Jun I et al. (2017) Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution. Cell Rep 19:630-642
Daher, May; Mustoe, Anthony M; Morriss-Andrews, Alex et al. (2017) Tuning RNA folding and function through rational design of junction topology. Nucleic Acids Res 45:9706-9715
Suresh, Madathilparambil V; Thomas, Bivin; Machado-Aranda, David et al. (2016) Double-Stranded RNA Interacts With Toll-Like Receptor 3 in Driving the Acute Inflammatory Response Following Lung Contusion. Crit Care Med 44:e1054-e1066
Rinaldi, Arlie J; Lund, Paul E; Blanco, Mario R et al. (2016) The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat Commun 7:8976
Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S et al. (2015) Meeting report: SMART timing--principles of single molecule techniques course at the University of Michigan 2014. Biopolymers 103:296-302
Liberman, Joseph A; Suddala, Krishna C; Aytenfisu, Asaminew et al. (2015) Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc Natl Acad Sci U S A 112:E3485-94

Showing the most recent 10 out of 75 publications