The goal of this proposal is to close the gap in our understanding of how actin filament network remodeling, disassembly and turnover are regulated, and thereby clarify the mechanisms driving cell motility, cell morphogenesis, endocytosis, phagocytosis, and cytokinesis. A number of actin binding proteins besides ADF/cofilin have been genetically implicated in promoting actin turnover, but their specific functional roles, interactions, and mechanisms have remained elusive. This has left the molecular basis for dynamic remodeling and depolymerization of cellular actin arrays obscure. The research proposed here will first address how densely branched actin networks assembled by Arp2/3 complex such as those found at the leading edge of motile cells, sites of endocytosis, and trailing motile vesicles, organelles and pathogens are rapidly debranched and disassembled. These experiments will focus on the function and mechanism of a novel ADF/cofilin structural homologue we recently characterized, GMF, which binds to Arp2/3 complex and stimulates debranching (Gandhi et al., 2010), and how GMF activity is enhanced in the presence of coronin. This will include examining how GMF and coronin affect the conformation of Arp2/3 complex, and testing the hypothesis that ATP hydrolysis on Arp2 and Arp3 facilitates debranching by GMF and coronin. Further, we will explore the possibility that there is an analogy between the nucleotide state of Arp2/3 regulating coronin and GMF interactions in debranching and the nucleotide state of actin regulating ADF/cofilin and coronin interactions to promote severing. Second, we will address the basic mechanisms for stimulating actin filament severing and disassembly. These experiments will focus initially on our newly proposed roles for coronin in severing ADP-actin filaments and in spatially and temporally controlling ADF/cofilin severing effects (Gandhi et al., 2009). We will also address the contributions of two other conserved actin disassembly factors (Aip1 and twinfilin) in actin disassembly. Finally, we will use in vivo studies to determine how these five conserved disassembly factors (GMF, coronin, ADF/cofilin, Aip1, and twinfilin) act in concert to promote actin cytoskeleton remodeling and turnover in living cells. To achieve these goals, we will combine genetics, reconstituted in vitro motility assays, and novel multi- wavelength single molecule TIRF microscopy tailored to elucidate the mechanisms of multi-component regulatory systems. Further, the mechanisms deduced from the experiments in vitro will be tested in vivo in motile cells to verify their biological importance and to assess their contributions to cell motility, in vivo actin turnover dynamics, and actin network ultrastructure (including branching) determined by cryo-electron tomography and correlative light and electron microscopy (CLEM).
The Aims of the proposal are to: 1) Determine how the branched actin filament networks assembled by Arp2/3 complex are rapidly debranched by GMF and coronin. 2) Define the roles of coronin, Aip1 and twinfilin in actin filament disassembly. 3) Test the importance of debranching and turnover mechanisms for cell motility and in vivo actin network organization and dynamics.

Public Health Relevance

The proposed research will elucidate mechanisms of cytoskeletal dynamics underlying cell motility, shape, and division. Genetic defects in actin regulators or alterations in their expression levels are implicated in many diseases, including a variety of life-threatening cancers, heart disease, neurodegenerative disorders, and developmental disorders (e.g. limb deformities, fertility defects, and hearing impairment). In addition, the proposed research will help define the molecular basis for the virulence and spread of human pathogens that hijack the actin cytoskeleton upon entering cells. Thus, the basic knowledge acquired from this research is expected to ultimately improve the design strategy of treatments for infectious diseases and cancer.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brandeis University
Schools of Arts and Sciences
United States
Zip Code
Hilton, Denise M; Aguilar, Rey M; Johnston, Adam B et al. (2018) Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. J Mol Biol 430:3323-3336
Goode, Bruce L; Sweeney, Meredith O; Eskin, Julian A (2018) GMF as an Actin Network Remodeling Factor. Trends Cell Biol 28:749-760
Hatano, Tomoyuki; Alioto, Salvatore; Roscioli, Emanuele et al. (2018) Rapid production of pure recombinant actin isoforms in Pichia pastoris. J Cell Sci 131:
Guo, Siyang; Sokolova, Olga S; Chung, Johnson et al. (2018) Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF. Nat Commun 9:2895
Howard, Nicole C; Marin, Nancy D; Ahmed, Mushtaq et al. (2018) Publisher Correction: Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol 3:1327
Johnston, Adam B; Hilton, Denise M; McConnell, Patrick et al. (2018) A novel mode of capping protein-regulation by twinfilin. Elife 7:
Wrasman, Kristie; Alioto, Salvatore L; Zhang, Yorke et al. (2018) A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in Saccharomyces cerevisiae. G3 (Bethesda) 8:1497-1512
Sokolova, Olga S; Chemeris, Angelina; Guo, Siyang et al. (2017) Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin. J Mol Biol 429:237-248
Mohapatra, Lishibanya; Goode, Bruce L; Jelenkovic, Predrag et al. (2016) Design Principles of Length Control of Cytoskeletal Structures. Annu Rev Biophys 45:85-116
Chin, Samantha M; Jansen, Silvia; Goode, Bruce L (2016) TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover. J Mol Biol 428:1604-16

Showing the most recent 10 out of 64 publications