Antibiotic resistance has become a major problem in hospitals and in the community and we need new antibiotics to forestall a public health crisis. The research proposed here is directed towards understanding the molecular basis by which some glycopeptide derivatives overcome antibiotic resistance and towards understanding the mechanism of action of moenomycin, a potent antibiotic that inhibits a major but underexploited antibacterial target, the transglycosyalses. Efficient chemoenzymatic and synthetic routes to glycolipid derivatives and moenomycin analogues are proposed, and the compounds that are made will be tested in both cell-based and enzymological assays in order to provide insight into structure-activity relationships. We also propose experiments to understand the mechanistic basis for how glycopeptide analogues overcome vanA and vanB resistance. A better understanding of the mechanisms by which resistance can be overcome, combined with information on how activity varies as a function of structure, could lead to the development of new antibiotics that overcome common forms of antibiotic resistance.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Arts and Sciences
United States
Zip Code
Bertani, Blake R; Taylor, Rebecca J; Nagy, Emma et al. (2018) A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Mol Microbiol 109:541-554
Mandler, Michael D; Baidin, Vadim; Lee, James et al. (2018) Novobiocin Enhances Polymyxin Activity by Stimulating Lipopolysaccharide Transport. J Am Chem Soc 140:6749-6753
Zheng, Sanduo; Sham, Lok-To; Rubino, Frederick A et al. (2018) Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci U S A 115:6709-6714
Rubino, Frederick A; Kumar, Sujeet; Ruiz, Natividad et al. (2018) Membrane Potential Is Required for MurJ Function. J Am Chem Soc 140:4481-4484
Schaefer, Kaitlin; Owens, Tristan W; Kahne, Daniel et al. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 140:2442-2445
Sherman, David J; Xie, Ran; Taylor, Rebecca J et al. (2018) Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 359:798-801
Xie, Ran; Taylor, Rebecca J; Kahne, Daniel (2018) Outer Membrane Translocon Communicates with Inner Membrane ATPase To Stop Lipopolysaccharide Transport. J Am Chem Soc 140:12691-12694
May, Janine M; Owens, Tristan W; Mandler, Michael D et al. (2017) The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport. J Am Chem Soc 139:17221-17224
Moison, Eileen; Xie, Ran; Zhang, Ge et al. (2017) A Fluorescent Probe Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide Biogenesis in Whole Cells. ACS Chem Biol 12:928-932
Welsh, Michael A; Taguchi, Atsushi; Schaefer, Kaitlin et al. (2017) Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J Am Chem Soc 139:17727-17730

Showing the most recent 10 out of 59 publications