Protein switches hold great promise as selective protein therapeutics and as biosensors for diagnostic and basic science applications;however, the creation of such proteins has proven difficult. We propose to create protein switches for these applications using a combinatorial method we developed that views all existing proteins as potential input and output modules for the desired switch. We will create a protein switch that will activate a prodrug only in cancer cells. Such a switch would have potential as a targeted therapeutic for the treatment of cancer. In addition, we will create switches to be used as sensors for kinases in vitro and in live cells. Switches to be used as sensors will be developed on a platform such that sensors for other proteins will be more readily created. Experiments proposed will also inform the study of how best to create switches.
Engineered protein switches hold great promise as selective protein therapeutics and as biosensors for diagnostic and basic science applications. We will develop switches designed for the treatment of cancer and switches designed to be used as sensors for the detection and quantification of important protein kinases in vitro and in live cells.
Shelat, Nirav Y; Parhi, Sidhartha; Ostermeier, Marc (2017) Development of a cancer-marker activated enzymatic switch from the herpes simplex virus thymidine kinase. Protein Eng Des Sel 30:95-103 |
Ribeiro, Lucas Ferreira; Tullman, Jennifer; Nicholes, Nathan et al. (2016) A xylose-stimulated xylanase-xylose binding protein chimera created by random nonhomologous recombination. Biotechnol Biofuels 9:119 |
Shelat, Nirav Y; Parhi, Sidhartha; Ostermeier, Marc (2016) A Positive Selection for Nucleoside Kinases in E. coli. PLoS One 11:e0162921 |
Choi, Jay H; Xiong, Tina; Ostermeier, Marc (2016) The interplay between effector binding and allostery in an engineered protein switch. Protein Sci 25:1605-16 |
Choi, Jay H; Zayats, Maya; Searson, Peter C et al. (2016) Electrochemical activation of engineered protein switches. Biotechnol Bioeng 113:453-6 |
Nicholes, N; Date, A; Beaujean, P et al. (2016) Modular protein switches derived from antibody mimetic proteins. Protein Eng Des Sel 29:77-85 |
Choi, Jay H; Laurent, Abigail H; Hilser, Vincent J et al. (2015) Design of protein switches based on an ensemble model of allostery. Nat Commun 6:6968 |
Choi, Jay H; Ostermeier, Marc (2015) Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior. ACS Synth Biol 4:400-6 |
Wright, R Clay; Khakhar, Arjun; Eshleman, James R et al. (2014) Advancements in the development of HIF-1?-activated protein switches for use in enzyme prodrug therapy. PLoS One 9:e114032 |
Chaikind, Brian; Ostermeier, Marc (2014) Directed evolution of improved zinc finger methyltransferases. PLoS One 9:e96931 |
Showing the most recent 10 out of 21 publications