The retinoblastoma tumor suppressor protein (pRB) and the related proteins p107 and p130 (collectively termed """"""""pocket"""""""" proteins) play an established role in suppressing cell growth through inhibition of the E2F transcription factor. A role for the pRB family in cell cycle exit and muscle differentiation has also been documented. While cellular quiescence and p16INK4a-induced growth arrest appear to require combinations of """"""""pocket"""""""" proteins, specific pRB family members have been implicated in terminal differentiation of muscle cells. However, very few direct, physiological targets have been linked to cellular quiescence, and fewer direct targets associated with differentiation have been identified. Furthermore, pRB binding to promoters has not been widely observed in cultured fibroblasts during the cell cycle, raising interesting and important questions regarding the role of pRB in tumor suppression and suggesting that pRB's tumor suppressive function may involve a much more extensive role in promoting differentiation than previously imagined. One goal of this proposal is to identify and characterize (1) direct, physiological targets of the pRB family involved in achieving cellular quiescence and p161NK4a -mediated growth arrest and (2) those gene targets that cooperate to confer irreversible cell cycle exit and terminal differentiation of muscle. It will also attempt to distinguish between those controls involved in cell cycle withdrawal and phenotypic differentiation. This will be accomplished through large-scale analyses of """"""""pocket"""""""" protein binding to the genome of living cells (factor location analysis) during the process of cell cycle exit and differentiation, through simultaneous analysis of gene expression profiles, and through biochemical dissection of target promoters. By examining three cell cycle exit pathways that appear to require certain pRB family members but not others, this work will have a fundamental impact on our understanding of the existence of gene regulatory networks effecting cell cycle exit in response to distinct biological cues. pRB plays a well-documented role in growth control, and inactivation of this tumor suppressor has been associated with a large proportion of human cancers. This Proposal is therefore highly relevant to our understanding of tumor suppressive mechanisms and cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM067132-01
Application #
6561136
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Zatz, Marion M
Project Start
2003-02-01
Project End
2007-01-31
Budget Start
2003-02-01
Budget End
2004-01-31
Support Year
1
Fiscal Year
2003
Total Cost
$362,723
Indirect Cost
Name
New York University
Department
Pathology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Lilja, Karin C; Zhang, Nan; Magli, Alessandro et al. (2017) Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS One 12:e0176190
Strikoudis, Alexandros; Lazaris, Charalampos; Trimarchi, Thomas et al. (2016) Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol 18:1127-1138
Yang, Yan; Li, Wencheng; Hoque, Mainul et al. (2016) PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet 12:e1005794
Blum, Roy (2015) Stepping inside the realm of epigenetic modifiers. Biomol Concepts 6:119-36
Cheng, Jemmie; Blum, Roy; Bowman, Christopher et al. (2014) A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell 53:979-92
Blum, Roy (2014) Activation of muscle enhancers by MyoD and epigenetic modifiers. J Cell Biochem 115:1855-67
Bowman, Christopher John; Ayer, Donald E; Dynlacht, Brian David (2014) Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol 16:1202-14
Blum, Roy; Dynlacht, Brian D (2013) The role of MyoD1 and histone modifications in the activation of muscle enhancers. Epigenetics 8:778-84
Vethantham, Vasupradha; Yang, Yan; Bowman, Christopher et al. (2012) Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation. Mol Cell Biol 32:1044-55
Blum, Roy; Vethantham, Vasupradha; Bowman, Christopher et al. (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26:2763-79

Showing the most recent 10 out of 21 publications