The long-term goal of our studies is to understand how prostaglandin (PG) synthesis is regulated. There are two PGH synthases (PGHS-1 and -2) each able to catalyze the committed step in PG formation-oxygenation of the omega 6 fatty acid arachidonic acid (AA) or the co3 fatty acid eicosapentaenoic acid. PGHSs, also known as cyclooxygenases (COXs), are products of different genes; typically, PGHS-1 is expressed constitutively, while PGHS-2 is expressed transiently. Each PGHS isoform subserves different biologies, and a central question is how this can occur. PGHS-1 displays negative substrate cooperativity. We posit that this restricts PGHS-1 to operating only at high AA concentrations when a bolus of PGs is required for a pulsatile, housekeeping event-something that could happen at any time during the cell cycle. Unlike PGHS-1, PGHS-2 can function at all substrate concentrations. We suggest that its normal function is to provide a slow, continuous synthesis of PGs during a 1-2 h period preceding cell differentiation or replication when AA levels are low and PGHS-2 is briefly present. In short, we hypothesize that regulation of PGHS-1 activity is kinetic while control of PGHS-2 activity resides in its expression. These ideas can explain how when the isoforms are co-expressed in cells, PGHS-2 can be active while PGHS-1 is latent. The kinetic properties of PGHS-1 permit its functioning in vitro only when AA or EPA levels reach > 1-2 uM. It is probably rare that cellular EPA levels become this high; moreover, EPA is a very poor substrate for PGHS-1. So we suggest that except at unusually high EPA/AA ratios, EPA does not function as a substrate for PGHS-1 in vivo. Some beneficial effects of dietary fish oil could relate to the inactivity of PGHS-1 with EPA.
Specific Aim #1 will test our concepts about the differences in the abilities of PGHS-1 and PGHS-2 to oxygenate low vs. high concentrations of endogenous AA vs. EPA in cells. Fibroblasts expressing PGHS-1 or PGHS-2 and having different EPA/AA ratios in their phospholipids will be cultured. PGE2 and PGEj, synthesis will be measured with cells stimulated to mobilize low vs. high levels of endogenous substrates. To determine if PGHS-1 can oxygenate EPA in vivo, PGHS-2 null mice will be fed fish oil and urinary, EPA-derived PGs will be quantified.
Specific Aim #2 will examine an unexplored aspect of the control of PGHS-2 expression-protein degradation. Compared to PGHS-1 degradation, PGHS-2 degradation is rapid (tj/2 ~ 2 h). We have identified a 27 amino acid instability element (27-IE) near the C-terminus of PGHS-2 that targets it to the ER-associated degradation system. We will define structural features of the 27-IE involved in its function and will phenotype a newly engineered PGHS-2 knock-in mouse having a non-functional 27-IE. ? ? ?
Showing the most recent 10 out of 32 publications