Gene silencing is a core cellular regulatory mechnaism. One form of silencing, conserved across eukaryotic kingdoms, involves histone H3 lysine 9 (H3K9) methylation, proteins of the HP1 family that recognize this modification, and, intriguingly, the RNAi machinery. Despite the conservation and significance of this mechanism, the fundamental questions of how this type of silencing is initiated, how RNAi promotes histone methylation, and how repression of gene expression is ultimately effected remain largely unanswered. To address these issues, we recently shifted our efforts from studies of the histone variant H2A.Z and other molecules that regulate silencing in S. cerevisiae (which lacks both H3K9 methylation and RNAi systems) to studies of silencing in the highly tractable fission yeast Schizosaccharomyces pombe. In this proposal, we seek to capitalize on a series of preliminary investigations in fission yeast already carried out in our laboratory to achieve a mechanistic understanding of gene silencing. This work will inform our understanding of repressive histone methylation, a mechanism that has been strongly implicated in the inactivation of tumor suppressor genes in human cancers.

Public Health Relevance

Our work focuses on understanding the mechanism of gene silencing mediated by repressive histone methylation. Since such mechanisms have been strongly implicated in the inactivation of tumor suppressor genes in human cancers, our fundamental insights into this conserved process will inform more applied studies of tumor biology. Our hope is that this will open up new avenues for the development of therapies that reactivate the expression of tumor suppressor genes and arrest growth and/or induce death of malignant cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Carter, Anthony D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Harrigan, Patrick; Madhani, Hiten D; El-Samad, Hana (2018) Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control. Cell 175:877-886.e10
Burke, Jordan E; Longhurst, Adam D; Merkurjev, Daria et al. (2018) Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution. Cell 173:1014-1030.e17
Mavor, David; Barlow, Kyle A; Asarnow, Daniel et al. (2018) Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biol Open 7:
Parsa, Jahan-Yar; Boudoukha, Selim; Burke, Jordan et al. (2018) Polymerase pausing induced by sequence-specific RNA-binding protein drives heterochromatin assembly. Genes Dev 32:953-964
Allshire, Robin C; Madhani, Hiten D (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229-244
Roth, Robert; Madhani, Hiten D; Garcia, Jennifer F (2018) Total RNA Isolation and Quantification of Specific RNAs in Fission Yeast. Methods Mol Biol 1721:63-72
Al-Sady, Bassem; Greenstein, Rachel A; El-Samad, Hana J et al. (2016) Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS One 11:e0159292
Inada, Maki; Nichols, Robert J; Parsa, Jahan-Yar et al. (2016) Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast. Nucleic Acids Res 44:9180-9189
Garcia, Jennifer F; Al-Sady, Bassem; Madhani, Hiten D (2015) Intrinsic Toxicity of Unchecked Heterochromatin Spread Is Suppressed by Redundant Chromatin Boundary Functions in Schizosacchromyces pombe. G3 (Bethesda) 5:1453-61
Dumesic, Phillip A; Rosenblad, Magnus A; Samuelsson, Tore et al. (2015) Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans. Nucleic Acids Res 43:9017-27

Showing the most recent 10 out of 32 publications