How epigenetic states are inherited during S phase of the cell cycle is one of the most challenging questions in the chromatin and epigenetic fields. DNA replication-coupled nucleosome assembly plays an important role in epigenetic inheritance following DNA replication and DNA repair. Mutations of most, if not all, genes involved in replication-coupled nucleosome assembly result in defects in transcriptional silencing at heterochromatin and genome instability in yeast and mammalian cells. We have been using the yeast S. cerevisiae as a model organism to study how newly synthesized (H3-H4)2 are assembled into nucleosomes following DNA replication and have made multiple, significant contributions to this process. However, how parental histone (H3-H4)2 are transferred to replicating DNA is still poorly understood, which hinders our understanding of transmission of epigenetic information into daughter cells. The major challenge to understanding parental histone (H3-H4)2 assembly is a lack of methods to track this process. Despite this challenge, we have developed the eSPAN (enrichment and Sequencing Protein-Associated Nascent DNA) method that can discern whether a protein binds to leading or lagging strands of DNA replication forks. This method enables us for the first time to monitor nucleosome assembly of both newly synthesized and parental histone (H3-H4)2 onto leading and lagging strands of DNA replication forks. In this proposal, we will determine how CAF-1 and other histone chaperones function in the deposition of new (H3-H4)2 and elucidate molecular mechanisms whereby parental (H3-H4)2 are assembled into nucleosomes following DNA replication. Together, our studies should have a profound impact on the understanding of nucleosome assembly and epigenetic inheritance.

Public Health Relevance

Chromatin, an organized complex of DNA, RNA and proteins, encodes epigenetic information and maintains genome integrity. In recent years, it has become increasingly clear that alterations in chromatin states play a causal role in a variety of cancers. During S phase, chromatin structure is temporarily disrupted and disassembled in order for DNA replication to proceed. Following passage of the replication fork, distinct chromatin states marked by different histone modifications must be restored, which is a daunting challenge for cells. However, it is largely unknown how epigenetically determined chromatin states are inherited during S phase of the cell cycle. In this proposal, we will employ the novel method that we developed to detect whether a protein binds to leading or lagging strands of DNA replication forks, to study how newly synthesized and parental (H3-H4)2 are assembled into nucleosomes, the 'first step' of inheritance of higher-order chromatin structure. These studies will not only provide an unprecedented insight into nucleosome assembly of parental and new (H3-H4)2, but also potentially increase our understanding of the contributions of epigenetic alterations to the development of human cancers.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM072719-10
Application #
8879275
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Carter, Anthony D
Project Start
2005-09-20
Project End
2016-07-31
Budget Start
2015-09-01
Budget End
2016-07-31
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Zhang, Kuo; Gao, Yuan; Li, Jingjing et al. (2016) A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res 44:5083-94
Dahlin, Jayme L; Nissink, J Willem M; Strasser, Jessica M et al. (2015) PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J Med Chem 58:2091-113
Dahlin, Jayme L; Nissink, J Willem M; Francis, Subhashree et al. (2015) Post-HTS case report and structural alert: Promiscuous 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one actives verified by ALARM NMR. Bioorg Med Chem Lett 25:4740-4752
Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A et al. (2015) Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 50:31-53
Yu, Chuanhe; Gan, Haiyun; Han, Junhong et al. (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56:551-63
Burgess, Rebecca J; Han, Junhong; Zhang, Zhiguo (2014) The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast. J Biol Chem 289:10518-29
Han, Junhong; Zhang, Hui; Zhang, Honglian et al. (2013) A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 155:817-29
Dahlin, Jayme L; Sinville, Rondedrick; Solberg, Jonathan et al. (2013) A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation. PLoS One 8:e78877
Burgess, Rebecca J; Zhang, Zhiguo (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20:14-22
Burgess, Rebecca J; Zhou, Hui; Han, Junhong et al. (2012) The SCFDia2 ubiquitin E3 ligase ubiquitylates Sir4 and functions in transcriptional silencing. PLoS Genet 8:e1002846

Showing the most recent 10 out of 22 publications