Accurate partitioning of the replicated genome to daughter cells during cell division is essential for the development and propagation of all living organisms. Errors in genome distribution are a hallmark of cancer cells and the machinery involved in this process is targeted in cancer chemotherapy. Thus, elucidating the mechanisms ensuring accurate genome distribution will inform our understanding of the genesis of cancer and guide development of new therapeutic strategies. A major player in genome distribution is the kinetochore, the machine built on the centromere regions of chromosomes during mitosis to generate a dynamic end- coupled interface with spindle microtubules. The mechanics at this interface are tightly integrated with a signaling pathway, termed the spindle checkpoint, which prevents cell cycle progression until all chromosomes are connected to the spindle. Microtubule binding and checkpoint signaling are coordinated at the kinetochore by the conserved Knl1/Mis12 complex/Ndc80 complex (KMN) protein network. Within this protein set, the Ndc80 complex interacts directly with microtubule ends. The work proposed here has three goals: 1) to elucidate the mechanisms ensuring accurate formation of Ndc80-mediated kinetochore-microtubule attachments, 2) to define kinetochore-independent essential functions of core checkpoint pathway components, and 3) to determine if enhancing cohesion fatigue is a viable strategy to target cancer cell division. These goals will be addressed in 4 specific aims.
Aim 1 will focus on understanding the formation of Ndc80-mediated end-coupled attachments, which are accelerated by lateral capture of microtubules by kinetochore-localized dynein, the major minus end-directed microtubule motor in cells. The proposed work will investigate crosstalk we discovered between the kinetochore dynein module and the Ndc80 complex and determine its significance to chromosome segregation fidelity.
Aim 2 will address poorly understood essential functions of the conserved Bub1 kinase and the Ndc80 complex subunit Nuf2 in the formation of kinetochore- microtubule attachments.
Aim 3 will focus on the provocative idea, based on our recent findings, that there are essential functions of the spindle checkpoint proteins Mad1 and Mad2 independent of their role in kinetochore- based checkpoint signaling.
This aim exploits mechanism-based engineering of the Mad1/Mad2 complex in an organismal context to elucidate the basis for the severe developmental and fertility defects associated with loss of Mad1/Mad2 in C. elegans, which we have shown are independent of kinetochore-localization dependent checkpoint signaling. Finally, Aim 4 builds on our observation that sister chromatids of chromosomes attached to the spindle ultimately become unglued in an uncoordinated manner when mitosis is prolonged; this traps the cell in an aberrant state, termed cohesion fatigue, from which it cannot recover. We will broadly assess if the propensity for cohesion fatigue is increased in cancer cell lines, as suggested by preliminary data, and determine whether enhancing cohesion fatigue could serve as a strategy to target cancer cell division.
During every cell division, the duplicated genome must be accurately partitioned to daughter cells. Errors in this process lead to birth defects and contribute to the genesis and therapeutic resistance of cancer. The goals of this project are to understand the machinery that partitions the duplicated genome and to explore a new strategy for selectively targeting the division of cancer cells.
Showing the most recent 10 out of 58 publications