The long-term goal is to employ a multidisciplinary approach to gain a thorough understanding of how the GTPase cycle is utilized in various biological systems to control specifically diverse cellular functions, including signal transduction, cytoskeleton organization, and intracellular membrane trafficking. The current research project focuses on the functional specificity of Rab GTPases with the Rab5 interaction with its effector Rabaptin5 as the structural basis. The Rab GTPase family contains about 40 distinct members (60 if isoforms are included) in the human genome and each interacts with a set of specific effectors and promotes a specific membrane fusion or transport function in the membrane trafficking system. Thus an important question is how each Rab distinguishes from other Rabs in recognizing its specific effectors. This functional specificity issue remains to be resolved at molecular and structural levels, which should have a broad impact not only on the GTPase field but also on the protein-protein recognition mechanisms in general. In this project, the mechanism of Rab5-Rabaptin5 interaction and its role in endosome fusion and membrane trafficking will be investigated, based on our recent Rab5-Rabaptin5 crystal structure. In addition to Rabaptin5, other Rab5 effectors in fusion (EEA1 and Rabenosyn5) will also be investigated and compared in the experiments below.
Aim 1 is to define the interaction interface of Rab5-Rabaptin5 complex and elucidate the specificity of this Rab-effector interaction via mutagenesis, biochemical binding assays and structural studies.
Aim 2 is to test the Rab specificity by converting another Rab into functional Rab5 through structure-based engineering.
Aim 3 addresses the mechanism of Rabaptin5 function in early endosome fusion. A new mechanism involving Rabaptin5 tetramerization is proposed based on the crystal structure and will be tested in functional assays.
Aim 4 addresses the role of Rabaptin5 in the biogenesis and maintenance of Rab5- and Rab4-positive endosomes during endocytosis via expressing its Rab5- or Rab4- binding domain or Rab5/Rab4-binding defective fragments in the cell to disrupt specifically the endogenous Rabaptin5 interaction with Rab5 or Rab4. This project should contribute to our understanding of a variety of diseases involving membrane trafficking and Rab GTPases, including heart diseases, cancers, skin and retinal diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM074692-04S1
Application #
8091565
Study Section
Cell Structure and Function (CSF)
Program Officer
Dunsmore, Sarah
Project Start
2010-07-15
Project End
2011-06-30
Budget Start
2010-07-15
Budget End
2011-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$76,333
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Yan, Qi; Lin, Mingqun; Huang, Weiyan et al. (2018) Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Proc Natl Acad Sci U S A 115:E8977-E8986
Banworth, Marcellus J; Li, Guangpu (2018) Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 9:158-181
Yang, Cheng D; Dang, Xie; Zheng, Hua W et al. (2017) Two Rab5 Homologs Are Essential for the Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. Front Plant Sci 8:620
Zhang, Dongmei; Marlin, M Caleb; Liang, Zhimin et al. (2016) The Protein Tyrosine Phosphatase MEG2 Regulates the Transport and Signal Transduction of Tropomyosin Receptor Kinase A. J Biol Chem 291:23895-23905
Marlin, M Caleb; Li, Guangpu (2015) Differential effects of overexpression of Rab5 and Rab22 on autophagy in PC12 cells with or without NGF. Methods Mol Biol 1298:295-304
Maskey, Dipak; Marlin, Matthew Caleb; Kim, Seokho et al. (2015) Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J 34:2424-40
Qi, Yaoyao; Marlin, M Caleb; Liang, Zhimin et al. (2015) Expression and localization of exocytic and recycling Rabs from Magnaporthe oryzae in mammalian cells. Methods Cell Biol 130:35-45
Li, Guangpu; Marlin, M Caleb (2015) Rab family of GTPases. Methods Mol Biol 1298:1-15
Marlin, M Caleb; Li, Guangpu (2015) Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol 314:239-57
Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua et al. (2015) Determination of Rab5 activity in the cell by effector pull-down assay. Methods Mol Biol 1298:259-70

Showing the most recent 10 out of 19 publications