Many processes in cells are mediated by large protein assemblies or multi-protein complexes that work together in a highly regulated manner to maintain normal homeostasis. Aberrations in multi-subunit protein complexes can lead to various disease states. In order to understand how """"""""protein machines"""""""" function in various cellular processes and to aid future drug development, mapping interaction networks of protein complexes has become one of the major endeavors in modern proteomics research. In order to capture protein interactions of all types in living cells, we have developed the QTAX method to allow effective capture, purification, and quantitative identification of stable, weak and/or transient protein interactions of protein complexes. This strategy allows generating an authentic snapshot of protein interaction networks as they exist in living cells. The ubiquitin-proteasome system (UPS) represents the major pathway for regulated degradation of intracellular proteins in eukaryotes, which helps control numerous essential physiological processes. Aberration of the UPS is known to lead to a variety of human diseases including cancer. The first class of anticancer drugs acts through general inhibition of the UPS and is effective but cannot be used for long-term treatment. This is because general proteasome inhibition will block the entire degradation process and affect many processes nonspecifically. In order to develop more effective and less toxic therapeutics, it is necessary to determine proteasome structural and functional heterogeneity and obtain a better understanding of the molecular mechanisms of UPS regulation and substrate specificity. Toward these goals, this proposal aims to investigate two previously uncharacterized subgroups of human 26S proteasome complexes in mammalian cells and to advance QTAX-based protein interaction study to new levels by defining structural topologies of in vivo protein complexes. The development of these novel strategies will be an exciting technological advancement in proteomics research.
The specific aims i nclude: 1) To unravel structural and functional differences of DNA-bound and non-DNA bound human proteasome complexes using the QTAX strategy;2) To develop the next generation of the QTAX strategy for mass spectrometric characterization of in vivo protein interaction topologies of protein complexes;3) To determine quantitative differences in ubiquitin receptor- associated proteasome complexes by a split-tag strategy and quantitative mass spectrometry.

Public Health Relevance

The ubiquitin-proteasome system affects many important cellular processes and has been implicated in a variety of human diseases including cancer. Comprehensive analysis of the human 26S proteasome to elucidate its structure, function and regulation will allow direct identification of potential molecular targets for improved cancer therapeutics targeting proteasome inhibition.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Edmonds, Charles G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Arts and Sciences
United States
Zip Code
Gutierrez, Craig B; Block, Sarah A; Yu, Clinton et al. (2018) Development of a Novel Sulfoxide-Containing MS-Cleavable Homobifunctional Cysteine-Reactive Cross-Linker for Studying Protein-Protein Interactions. Anal Chem 90:7600-7607
Alkafeef, Selma S; Yu, Clinton; Huang, Lan et al. (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14:e1007176
Sement, Fran├žois M; Suematsu, Takuma; Zhang, Liye et al. (2018) Transcription initiation defines kinetoplast RNA boundaries. Proc Natl Acad Sci U S A 115:E10323-E10332
Yu, Clinton; Huang, Lan (2018) Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 90:144-165
Gu, Zhu Chao; Wu, Edwin; Sailer, Carolin et al. (2017) Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol Biol Cell 28:2479-2491
Zhang, Liye; Sement, Francois M; Suematsu, Takuma et al. (2017) PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. EMBO J 36:2435-2454
Wang, Xiaorong; Chemmama, Ilan E; Yu, Clinton et al. (2017) The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem 292:16310-16320
Wang, Xiaorong; Cimermancic, Peter; Yu, Clinton et al. (2017) Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Mol Cell Proteomics 16:840-854
Kim, Jin-Kwang; Liu, Jinqiang; Hu, Xichan et al. (2017) Structural Basis for Shelterin Bridge Assembly. Mol Cell 68:698-714.e5
Scott, Harry; Kim, Jin-Kwang; Yu, Clinton et al. (2017) Spatial Organization and Molecular Interactions of the Schizosaccharomyces pombe Ccq1-Tpz1-Poz1 Shelterin Complex. J Mol Biol 429:2863-2872

Showing the most recent 10 out of 73 publications