Rapid sequencing methods identified functional RNA sequences across all domains of life. Additionally, structure mapping methods demonstrate extensive in vivo structure for RNA, including messenger RNAs. Determining the roles of RNA structures and their mechanisms of action is central to biology and human health. RNA secondary structure prediction is one of the tools that is commonly used to aid in understanding RNA function, and we addressed the need for RNA secondary structure prediction by developing the software package RNAstructure. RNAstructure is a user-friendly software package for RNA secondary structure prediction, display, and analysis. It includes methods for structure prediction of a single sequence, including pseudoknots, structure prediction for bimolecular interactions, and prediction of the conserved structure for multiple homologous sequences. It can use structure mapping data, including mapping with chemical agents and enzymes that reveal unpaired nucleotides, to improve the accuracy of structure prediction. It can also predict unpaired regions in RNA, and these predictions are essential for siRNA and antisense oligonucleotide design. Thermodynamic parameters are provided for both RNA and DNA sequences, which extends the structure predictions to DNA. The programs are available with a graphical user interface (for Windows, Mac OS X, or Linux), command line interfaces, and also as web servers. The algorithms are also available for use in other programs as a set of well-documented C++ classes. The package is fully open source, under the GNU Public License. For the next period of support, we propose high-impact aims that will keep RNAstructure cutting-edge in its ability to make new types of structure predictions needed by the community. We will update the nearest neighbor parameters using the latest experimental results, and expand the parameters to include nucleotides beyond A, C, G, and U that result from post-transcriptional modification. We will also expand our algorithms to improve the accuracy of pseudoknot prediction. Finally, we will continue to support our community of users and developers.

Public Health Relevance

RNA structure is important in both human health and disease, including genetic diseases and infectious diseases. Here we are developing a software tool that predicts and analyzes RNA structure. This provides important information that can be used to understand disease mechanisms, target RNA with pharmaceuticals, and develop RNA as a pharmaceutical.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
School of Medicine & Dentistry
United States
Zip Code
Spasic, Aleksandar; Kennedy, Scott D; Needham, Laura et al. (2018) Molecular dynamics correctly models the unusual major conformation of the GAGU RNA internal loop and with NMR reveals an unusual minor conformation. RNA 24:656-672
Berger, Kyle D; Kennedy, Scott D; Schroeder, Susan J et al. (2018) Surprising Sequence Effects on GU Closure of Symmetric 2 × 2 Nucleotide RNA Internal Loops. Biochemistry 57:2121-2131
Spasic, Aleksandar; Berger, Kyle D; Chen, Jonathan L et al. (2018) Improving RNA nearest neighbor parameters for helices by going beyond the two-state model. Nucleic Acids Res 46:4883-4892
Lai, Wan-Jung C; Kayedkhordeh, Mohammad; Cornell, Erica V et al. (2018) mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat Commun 9:4328
Payea, Matthew J; Sloma, Michael F; Kon, Yoshiko et al. (2018) Widespread temperature sensitivity and tRNA decay due to mutations in a yeast tRNA. RNA 24:410-422
Bellaousov, Stanislav; Kayedkhordeh, Mohammad; Peterson, Raymond J et al. (2018) Accelerated RNA secondary structure design using preselected sequences for helices and loops. RNA 24:1555-1567
Belashov, Ivan A; Crawford, David W; Cavender, Chapin E et al. (2018) Structure of HIV TAR in complex with a Lab-Evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res 46:6401-6415
Aytenfisu, Asaminew H; Spasic, Aleksandar; Grossfield, Alan et al. (2017) Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J Chem Theory Comput 13:900-915
Gamache, Eric R; Doh, Jung H; Ritz, Justin et al. (2017) Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA. Viruses 9:
Zuber, Jeffrey; Sun, Hongying; Zhang, Xiaoju et al. (2017) A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction. Nucleic Acids Res 45:6168-6176

Showing the most recent 10 out of 58 publications