Although the p53 signaling pathway is perhaps one of the best studied pathways in the human cell, there are many open questions related to its regulation and function. We understand a great deal about specific protein- protein interactions in the pathway, but we understand little about the overall relationship between input (damage and stress signals) and output (cellular outcomes ranging from cell growth to cell death), and the kinetics of the response that determines these relationships. The supplementary funding I request here would allow my lab to take two novel approaches to these questions.
In Aim 1, we will follow up on a recent discovery, made using long-term single-cell imaging, that p53 shows spontaneous pulses in the absence of external DNA damage. These pulses appear to be connected to the cell cycle and we therefore suspect that they reflect spontaneous damage during DNA replication or mitosis. We will ask what triggers p53 spontaneous pulses and what controls their shape and timing. We will use a system we have developed for quantifying the amount of double-stranded DNA breaks in live cells to determine whether p53 spontaneous pulses correlate with spontaneous DNA damage during cellular growth and division. We will use chemical and genetic perturbation to test which regulators initiate and control p53 spontaneous pulses. Understanding the regulation of p53 spontaneous pulses will give us the tools to manipulate them, and to develop approaches to understand their function. It is possible that these spontaneous p53 pulses have an important role in preventing the build-up of DNA damage in unstressed cells - a previously unappreciated feature of p53's activity. We have preliminary data showing that p53 pulses in non-stressed conditions do not activate p21 and only a subset of the cells activates p21 in response to irradiation. We suspect that this is due to differences in the post-translational modifications on p53 in these cells.
In Aim 2 we will use chemical and genetic perturbations to force, or prevent specific p53 modifications and test the effect on p21 dynamics and on cell fate using live cell imaging. We will also determine the post-translational modification of p53 during the first and second pulse and will use flow cytometry to sort and isolate cells that activate p21 versus cells that do not. We will then use mass spectrometry to determine which p53 modifications occur in these different populations. This will allow us, for the first time, to take an unbiased approach for connecting combinations of p53 modifications with the activation of its specific target genes.

Public Health Relevance

Our study will provide new insights into the control and manipulation of the p53 pathway, perhaps the most important pathway protecting human cells against the development of cancer. These studies will give a deeper understanding of the biological mechanisms and function of p53, and will provide a prototype for the analysis, description, and understanding of the dynamics of other signaling pathways in single living human cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-P (95))
Program Officer
Dunsmore, Sarah
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Arbelle, Assaf; Reyes, Jose; Chen, Jia-Yun et al. (2018) A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos. Med Image Anal 47:140-152
Reyes, José; Lahav, Galit (2018) Leveraging and coping with uncertainty in the response of individual cells to therapy. Curr Opin Biotechnol 51:109-115
Stewart-Ornstein, Jacob; Cheng, Ho Wa Jacky; Lahav, Galit (2017) Conservation and Divergence of p53 Oscillation Dynamics across Species. Cell Syst 5:410-417.e4
Stewart-Ornstein, Jacob; Lahav, Galit (2017) Integrating genomic information and signaling dynamics for efficient cancer therapy. Curr Opin Syst Biol 1:38-43
Oppenheim, Ariella; Lahav, Galit (2017) The puzzling interplay between p53 and Sp1. Aging (Albany NY) 9:1355-1356
Hafner, Antonina; Stewart-Ornstein, Jacob; Purvis, Jeremy E et al. (2017) p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nat Struct Mol Biol 24:840-847
Stewart-Ornstein, Jacob; Lahav, Galit (2017) p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM. Sci Signal 10:
Chen, Sheng-Hong; Lahav, Galit (2016) Two is better than one; toward a rational design of combinatorial therapy. Curr Opin Struct Biol 41:145-150
Stewart-Ornstein, Jacob; Lahav, Galit (2016) Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell Rep 14:1800-1811
Chen, Sheng-Hong; Forrester, William; Lahav, Galit (2016) Schedule-dependent interaction between anticancer treatments. Science 351:1204-8

Showing the most recent 10 out of 35 publications