Our long-term interest is to understand how ion channels are localized to particular sub-cellular sites and regulated by specific protein interactors. In this grant proposal, we focus on the voltage-gated K+ channel, Shal (Kv4), which has been implicated in setting the rhythmic firing of central pattern generators, learning and memory, and shaping the cardiac action potential. Therefore, understanding the mechanisms of Shal K+ channel localization and regulation has important implications for vital processes in the heart and central nervous system. We focus our initial studies on two newly identified interactors, K30 and K29, of Drosophila Shal channels. Both interactors are expressed primarily in the nervous system, co-localize with Shal channels, and exhibit strong and specific binding to the C-terminus of Shal channels. Interestingly, K29 binds to a highly conserved motif required for dendritic targeting of mammalian Shal channels, implicating K29 as a key regulator of Shal channel localization. We will characterize Shal-K30 and Shal-K29 interactions and examine the function of K30 and K29 in the subcellular localization and regulation of Shal channels in vivo. Using Drosophila as a model system will allow us to combine genetic, electrophysiological, cell and molecular biological approaches to study how all identified interactors function in the regulation and subcellular localization of Shal channels. Since strategies and proteins identified are likely to be conserved in mammals, our findings are expected to be significant not only for understanding Drosophila ion channels, but also for mammalian systems. Relevance to public health: Ion channels are the basic components that shape electrical and chemical communication in the nervous system, and the function of ion channels is highly dependent on their subcellular localization and regulation. When ion channels are mis-localized or mis-regulated, consequences are often severe, resulting in conditions such as epilepsy, episodic ataxia, periodic paralysis, myotonia, and Long QT syndrome. Therefore, understanding how ion channels are regulated and localized to subcellular compartments is likely to give important insights into the prevention and treatment of these conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM083335-05S1
Application #
8090635
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Hagan, Ann A
Project Start
2007-08-01
Project End
2012-03-31
Budget Start
2010-06-01
Budget End
2012-03-31
Support Year
5
Fiscal Year
2010
Total Cost
$45,061
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Gireud, Monica; Sirisaengtaksin, Natalie; Tsunoda, Susan et al. (2015) Cell-free reconstitution of multivesicular body (MVB) cargo sorting. Methods Mol Biol 1270:115-24
Ping, Yong; Hahm, Eu-Teum; Waro, Girma et al. (2015) Linking a?42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model. PLoS Genet 11:e1005025
Ping, Yong; Tsunoda, Susan (2012) Homeostatic plasticity in Drosophila central neurons, and implications in human diseases. Fly (Austin) 6:153-7
Ping, Yong; Tsunoda, Susan (2012) Inactivity-induced increase in nAChRs upregulates Shal K(+) channels to stabilize synaptic potentials. Nat Neurosci 15:90-7
Ping, Yong; Waro, Girma; Licursi, Ashley et al. (2011) Shal/K(v)4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One 6:e16043
Diao, Fengqiu; Chaufty, Jeremy; Waro, Girma et al. (2010) SIDL interacts with the dendritic targeting motif of Shal (K(v)4) K+ channels in Drosophila. Mol Cell Neurosci 45:75-83
Diao, Fengqiu; Waro, Girma; Tsunoda, Susan (2009) Fast inactivation of Shal (K(v)4) K+ channels is regulated by the novel interactor SKIP3 in Drosophila neurons. Mol Cell Neurosci 42:33-44