The long range goal of the proposed research is to develop strategies for the chemical synthesis of ion channel proteins and to use chemical synthesis to investigate the mechanisms of ion channel function. Understanding the relationship between the atomic structure of a protein and the biological function requires the ability to perturb the protein structure in a precise manner. Chemical synthesis facilitates the incorporation of a wide variety of side chain and peptide backbone modifications that enables precise modifications of the structural and electronic properties of the protein. Similar modifications are not possible using conventional mutagenesis making chemical synthesis an important asset in investigations of protein structure and function. The size of the protein has been a major factor limiting the use of chemical synthesis to investigate proteins. In the field of membrane proteins, chemical synthesis has so far been accomplished only for relatively small (<150 amino acids) proteins. Proteins of interest such as voltage gated ion channels are much bigger and are presently not amenable to chemical synthesis. To overcome this limitation, we propose developing methods that can be used for the chemical synthesis of large (>150 amino acid) membrane proteins thereby enabling us to use chemical synthesis to investigate these proteins. We will pursue three major specific aims.
Aim 1) To develop a chemical synthesis of the voltage gated K+ channel KvAP, and the non-selective channel, NaK. The chemical synthesis protocols that we develop in this aim will be useful not only in investigating these specific proteins but will also find applicability in the chemical synthesis of other important classes of membrane proteins.
Aim 2) We will investigate the slow inactivation process in the KvAP channel. Understanding the process of slow inactivation is important because the rate of entry (and exit) of channels into the inactivated state can significantly alter the number of channels available and therefore the electrical properties of the cell.
Aim 3) We will investigate the binding of divalent ions to the outer vestibule of the NaK channel using chemical synthesis. The NaK channel shows sequence and functional similarity to cyclic nucleotide gated ion channels. Therefore, the mechanisms that we uncover in our investigations of the NaK channel will be relevant in understanding the physiologically important interactions of divalent ions with CNG channels.

Public Health Relevance

Ion channel function underlies many important biological processes such as the excitation of nerve and muscle cells, the secretion of hormones, and sensory transduction. The research proposed is significant because it will provide a deeper understanding of the physiologically important processes of slow inactivation and block by divalent ions. Further, the research is important as it will establish chemical synthesis as an important tool for understanding ion channel structure and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM087546-03
Application #
8055543
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Fabian, Miles
Project Start
2009-05-01
Project End
2014-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
3
Fiscal Year
2011
Total Cost
$271,684
Indirect Cost
Name
Oregon Health and Science University
Department
Physiology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Infield, Daniel T; Matulef, Kimberly; Galpin, Jason D et al. (2018) Main-chain mutagenesis reveals intrahelical coupling in an ion channel voltage-sensor. Nat Commun 9:5055
Riederer, Erika A; Focke, Paul J; Georgieva, Elka R et al. (2018) A facile approach for the in vitro assembly of multimeric membrane transport proteins. Elife 7:
Matulef, Kimberly; Valiyaveetil, Francis I (2018) Patch-Clamp Recordings of the KcsA K+ Channel in Unilamellar Blisters. Methods Mol Biol 1684:181-191
Kratochvil, Huong T; Maj, Micha?; Matulef, Kimberly et al. (2017) Probing the Effects of Gating on the Ion Occupancy of the K+ Channel Selectivity Filter Using Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 139:8837-8845
Valiyaveetil, Francis I (2017) A glimpse into the C-type-inactivated state for a Potassium Channel. Nat Struct Mol Biol 24:787-788
Focke, Paul J; Hein, Christopher; Hoffmann, Beate et al. (2016) Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression. Biochemistry 55:4212-9
Kratochvil, Huong T; Carr, Joshua K; Matulef, Kimberly et al. (2016) Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353:1040-1044
Matulef, Kimberly; Annen, Alvin W; Nix, Jay C et al. (2016) Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation. Structure 24:750-761
Leisle, Lilia; Valiyaveetil, Francis; Mehl, Ryan A et al. (2015) Incorporation of Non-Canonical Amino Acids. Adv Exp Med Biol 869:119-51
Focke, Paul J; Annen, Alvin W; Valiyaveetil, Francis I (2015) Engineering the glutamate transporter homologue GltPh using protein semisynthesis. Biochemistry 54:1694-702

Showing the most recent 10 out of 18 publications