Photochemical methods are unique because (1) they enable the synthesis of unusual, strained molecular frameworks that cannot be synthesized by other methods, and (2) they use light, which is cleaner, less expensive, and more renewable than conventional chemical reagents. Nevertheless, pharmaceutical companies rarely take advantage of photochemical synthesis because the need for specialized photochemical equipment is an impractical impediment and because very few methods to control the stereochemistry of photochemical reactions exist. Therefore, the structures of the molecules that are produced by photochemical synthesis have essentially not been examined as possible drug candidates. This Proposal describes an innovative new strategy to perform photochemical reactions using readily available sources of visible light such as a consumer light bulb or ambient sunlight instead of a specialized photochemical reactor. Research will proceed in two phases: 1. Development of a photocatalytic system that is able to efficiently convert visible light energy into chemical reactivity with high levels of stereochemical control. 2. Application of this system to a variety of new chemical reactions that produce unusual molecular structures. These methods are powerful, robust, and simple to perform on large, industrially relevant scales. Thus, the research described in this proposal will significantly impact both the academic chemistry community and the broader community of medicinal chemists who require new methods of molecule construction to discover the next generation of life-saving drugs.

Public Health Relevance

The function of a drug is determined by its structure, and drugs with similar structures tend to have similar effects on human disease. The discovery of new drugs that could treat currently incurable diseases, therefore, relies upon the ability of chemists to construct different kinds of molecules that differ significantly in structure from known medicinal agents. We are developing a conceptually novel approach to chemical synthesis that takes advantage of the clean, renewable energy in sunlight to construct complex, structurally unique molecules that may serve as templates for the discovery of the next generation of disease-fighting drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM095666-04
Application #
8587488
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Lees, Robert G
Project Start
2010-12-01
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
4
Fiscal Year
2014
Total Cost
$254,565
Indirect Cost
$79,065
Name
University of Wisconsin Madison
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Amador, Adrian G; Sherbrook, Evan M; Lu, Zhan et al. (2018) A general protocol for radical anion [3 + 2] cycloaddition enabled by tandem Lewis acid photoredox catalysis. Synthesis (Stuttg) 50:539-547
Reed, Nicholas L; Herman, Madeline I; Miltchev, Vladimir P et al. (2018) Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis. Org Lett 20:7345-7350
Pitre, Spencer P; Yoon, Tehshik P; Scaiano, Juan C (2017) Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chem Commun (Camb) 53:4335-4338
Miller, Zachary D; Lee, Byung Joo; Yoon, Tehshik P (2017) Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angew Chem Int Ed Engl 56:11891-11895
Lin, Shishi; Lies, Shane D; Gravatt, Christopher S et al. (2017) Radical Cation Cycloadditions Using Cleavable Redox Auxiliaries. Org Lett 19:368-371
Pitre, Spencer P; Scaiano, Juan C; Yoon, Tehshik P (2017) Photocatalytic Indole Diels-Alder Cycloadditions Mediated by Heterogeneous Platinum-Modified Titanium Dioxide. ACS Catal 7:6440-6444
Yoon, Tehshik P (2016) Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis. Acc Chem Res 49:2307-2315
Blum, Travis R; Miller, Zachary D; Bates, Desiree M et al. (2016) Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354:1391-1395
Scholz, Spencer O; Farney, Elliot P; Kim, Sangyun et al. (2016) Spin-Selective Generation of Triplet Nitrenes: Olefin Aziridination through Visible-Light Photosensitization of Azidoformates. Angew Chem Int Ed Engl 55:2239-42
Amador, Adrian G; Sherbrook, Evan M; Yoon, Tehshik P (2016) Enantioselective Photocatalytic [3 + 2] Cycloadditions of Aryl Cyclopropyl Ketones. J Am Chem Soc 138:4722-5

Showing the most recent 10 out of 33 publications