A wide variety of cell types delay cell cycle transitions until they reach a critical size threshold, but the mechanisms that measure size and transmit this information to the core cell cycle machinery are largely unknown. The protein kinase Cdr2 connects cell size measurement with mitotic entry in fission yeast, and is part of a conserved family of protein kinases that down- regulate the mitotic inhibitor Wee1 in yeast and human cells. To understand the function of Cdr2 in cell size checkpoints, it is important to define the upstream signals that control Cdr2 activity and localization. We are using combined genetic, biochemical, and microscopy approaches to identify Cdr2 regulatory circuits and to determine how their input-output behaviors depend on cell size. Our initial work implicates three molecular input signals to Cdr2: the polarity kinase Pom1, the methyltransferase Skb1, and phosphorylation in the Cdr2 activation loop by an unknown kinase.
The specific aims of the project are to: (1) define how phosphorylation by Pom1 inhibits Cdr2 in cells, (2) identify the Skb1 signaling pathway that controls Cdr2, and (3) determine the role of Cdr2 activation loop phosphorylation in the mitotic size control system. Successful completion of these goals will advance scientific knowledge by identifying the mechanisms that coordinate cell growth and division through the activity of core cell cycle proteins. Moreover, the sizing mechanisms that we uncover will provide insights for how size controls the activity of other biological systems.

Public Health Relevance

Defects in the mitotic entry control system can lead to genomic instability, a hallmark of cancer. We will use the model organism fission yeast to define of the upstream signals that govern this cell cycle transition. These findings will be important to understand the cellular mechanisms that prevent untimely and inappropriate cell divisions, which contribute to human diseases such as cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM099774-05
Application #
8997104
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Melillo, Amanda A
Project Start
2012-02-06
Project End
2017-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Biochemistry
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
Allard, Corey A H; Opalko, Hannah E; Liu, Ko-Wei et al. (2018) Cell size-dependent regulation of Wee1 localization by Cdr2 cortical nodes. J Cell Biol 217:1589-1599
Lee, Mid Eum; Rusin, Scott F; Jenkins, Nicole et al. (2018) Mechanisms Connecting the Conserved Protein Kinases Ssp1, Kin1, and Pom1 in Fission Yeast Cell Polarity and Division. Curr Biol 28:84-92.e4
Moseley, James B (2018) Eisosomes. Curr Biol 28:R376-R378
Opalko, Hannah E; Moseley, James B (2017) Dynamic regulation of Cdr1 kinase localization and phosphorylation during osmotic stress. J Biol Chem 292:18457-18468
Schutt, Katherine L; Moseley, James B (2017) Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 28:1804-1814
Moseley, James B (2017) Wee1 and Cdc25: Tools, pathways, mechanisms, questions. Cell Cycle 16:599-600
Deng, Lin; Lee, Mid Eum; Schutt, Katherine L et al. (2017) Phosphatases Generate Signal Specificity Downstream of Ssp1 Kinase in Fission Yeast. Mol Cell Biol 37:
Zurawel, Ashley A; Kabeche, Ruth; DiGregorio, Sonja E et al. (2016) CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins. MBio 7:
Kettenbach, Arminja N; Deng, Lin; Wu, Youjun et al. (2015) Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol Cell Proteomics 14:1275-87
Kabeche, Ruth; Madrid, Marisa; Cansado, José et al. (2015) Eisosomes Regulate Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Cortical Clusters and Mitogen-activated Protein (MAP) Kinase Signaling upon Osmotic Stress. J Biol Chem 290:25960-73

Showing the most recent 10 out of 22 publications