Drug-induced hepatotoxicity is a leading cause of both the withdrawal of approved drugs from the market and the attrition of new chemical entities during the drug development process; however, the mechanisms underlying drug-induced hepatotoxicity are not fully understood. We have used efavirenz, an antiretroviral drug that is hepatotoxic in certain patients, as a model compound to investigate cellular signaling mechanisms that may play a causal role in drug- induced hepatocyte death. Previously, using primary human hepatocytes, we demonstrated that efavirenz and the major oxidative metabolite of efavirenz, denoted as 8-hydroxyefavirenz (8- OHefavirenz), stimulate cell death in a manner that is dependent upon activation of the stress kinase c-Jun N-terminal kinase and upregulation of the proapoptotic protein BimEL (Bcl-2 interacting mediator of cell death extra long). Subsequently, we have reported that efavirenz can also activate inositol requiring enzyme 1? (IRE1?), a key regulator of cell stress that lies upstream of JNK and BimEL. The goal of this proposal is to determine the mechanism by which efavirenz and 8-OHefavirenz activate BimEL and IRE1?, while also gaining a mechanistic understanding of how genetic variation in IRE1? might impact efavirenz and 8-OHefavirenz-induced cell death. Importantly, we will leverage the insights we have gained through using efavirenz as a model compound and employ prototypic hepatotoxic drugs beyond efavirenz, namely carbamazepine, diclofenac and isoniazid, in order to establish BimEL and IRE1? as central regulators of drug- induced hepatotoxicity across a range of drug classes.
The aims are as follows: (1) to test the hypothesis that BimEL acts as an executioner of cell death in response to efavirenz and other prototypic hepatotoxic drugs: BimEL null mice will be used to determine whether the absence of BimEL prevents hepatotoxicity stimulated by the hepatotoxic drugs being investigated here; CRISPR/Cas9 systems will be used to determine the role of effector proteins, Bax and Bak, that are downstream of BimEL in modulating hepatocyte death; CRISPR/Cas9 and reporter gene assays will be used to define the mechanism by which efavirenz, 8-OHefavirenz and other hepatotoxic drugs regulate the transcription of BimEL; efavirenz analogs will be employed in order to elucidate the structure-activity relationship of BimEL activation by efavirenz; (2) to test the hypothesis that IRE1? is a central upstream regulator of drug-induced hepatotoxicity that is stimulated by several classes of drugs: we will determine whether efavirenz, 8-OHefavirenz, and other hepatotoxic drugs stimulate formation of the IRE1?/TRAF2/ASK1/JNK complex that results in IRE1?-dependent activation of JNK; we will test the impact of naturally occurring genetic variants of IRE1? on activity and cell death. It is expected that these studies will define BimEL and IRE1? activation as important molecular mechanisms by which a range of drugs induce- hepatotoxicity.

Public Health Relevance

? Drug-induced hepatotoxicity is a major cause of acute liver failure. The goal of this project is to investigate the mechanism(s) underlying the liver toxicity associated with the use of certain clinically important drugs. Through understanding these mechanism(s) therapeutic strategies can be subsequently devised for the prevention and treatment of this adverse event.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM103853-08
Application #
10016325
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Garcia, Martha
Project Start
2013-04-01
Project End
2023-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Narayanan, Bhargavi; Lade, Julie M; Heck, Carley J S et al. (2018) Probing Ligand Structure-Activity Relationships in Pregnane?X Receptor (PXR): Efavirenz and 8-Hydroxyefavirenz Exhibit Divergence in Activation. ChemMedChem 13:736-747
Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T (2016) Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer. Biochemistry 55:6087-6099
Cox, Philip M; Bumpus, Namandjé N (2016) Single Heteroatom Substitutions in the Efavirenz Oxazinone Ring Impact Metabolism by CYP2B6. ChemMedChem 11:2630-2637
Lade, Julie M; To, Elaine E; Hendrix, Craig W et al. (2015) Discovery of Genetic Variants of the Kinases That Activate Tenofovir in a Compartment-specific Manner. EBioMedicine 2:1145-52
Seamon, Kyle J; Hansen, Erik C; Kadina, Anastasia P et al. (2014) Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 136:9822-5
Hersman, Elisabeth M; Bumpus, Namandjé N (2014) A targeted proteomics approach for profiling murine cytochrome P450 expression. J Pharmacol Exp Ther 349:221-8
Cox, Philip M; Bumpus, Namandjé N (2014) Structure-Activity Studies Reveal the Oxazinone Ring Is a Determinant of Cytochrome P450 2B6 Activity Toward Efavirenz. ACS Med Chem Lett 5:1156-1161
Avery, Lindsay B; Bumpus, Namandjé N (2014) Valproic acid is a novel activator of AMP-activated protein kinase and decreases liver mass, hepatic fat accumulation, and serum glucose in obese mice. Mol Pharmacol 85:1-10
Lade, Julie M; Avery, Lindsay B; Bumpus, Namandjé N (2013) Human biotransformation of the nonnucleoside reverse transcriptase inhibitor rilpivirine and a cross-species metabolism comparison. Antimicrob Agents Chemother 57:5067-79
Avery, Lindsay B; VanAusdall, Jennifer L; Hendrix, Craig W et al. (2013) Compartmentalization and antiviral effect of efavirenz metabolites in blood plasma, seminal plasma, and cerebrospinal fluid. Drug Metab Dispos 41:422-9

Showing the most recent 10 out of 11 publications