Histopathology is the cornerstone of disease diagnosis and prognosis. With the advance of imaging technology, whole-slide image (WSI) scanning of tissue slides is becoming a routine clinical procedure and producing a massive amount of data that captures histopathological details in high resolution. Most current pathological image analysis methods, similar to general image analysis approaches, mainly focus on morphology features, such as tissue texture and granularity, but ignore the complex hierarchical structures of tissues. Cells are the fundamental building blocks to tissues. Different types of cells are first organized into cellular components, which together with the extracellular matrix, form different types of tissue architectures. Understanding the interactions among these different types of cells can provide critical insights into biology and disease status. However, there are some major computational challenges: (1) How to identify and classify different types of cells in tissue, (2) how to characterize the highly complex and heterogeneous spatial organization of tissue, and (3) how to integrate histopathology data with other types of data to study disease status and progression. The goal of this proposal is to develop novel computational methods to analyze histopathology image data to study disease status and progression. In order to achieve this goal, we have built a strong research team with complementary expertise in image analysis, machine learning, statistical modeling, and clinical pathology. Specifically, we will develop novel algorithms to: (1) classify different types of cells from histopathology tissue WSI scans, (2) characterize and quantify cell spatial distribution and cell-cell interactions, and (3) integrate histopathology data with other types data to study disease progression. All proposed methods were motivated by real-world biological and clinical applications across different types of diseases, such as liver diseases, infectious diseases, and cancer. If implemented successfully, the proposed study will facilitate the analysis and modeling of data generated from histopathology tissue slides to improve disease risk assessment, diagnosis, and outcome prediction.

Public Health Relevance

Technological advances in histopathology imaging and computing have enabled the in-depth characterization of pathology tissues. The overarching goal of this proposal is to develop computational algorithms to analyze histopathology image data to study disease status and progression.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM140012-01
Application #
10097119
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Ravichandran, Veerasamy
Project Start
2021-01-01
Project End
2024-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Other Clinical Sciences
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390