The ultimate goals of these studies are to precisely define the genetic defects, at the molecular level, in hereditary angioneurotic edema. In addition, knowledge of the complete structure of normal and dysfunctional C1 inhibitor proteins will help to understand the function of this protease inhibitor. These studies may lead to the development of more specific therapy for hereditary angioneurotic edema, to its prenatal detection and ultimately to gene therapy for the disease. Toward these ends, C1 inhibitor cDNA clones have been isolated, and their sequence is being determined. This will be used to define the complete sequence of the protein. Restriction fragment length polymorphism of the C1 inhibitor gene will be analyzed, and possible linkage to Alport's syndrome will be investigated. Genomic clones for C1 inhibitor have been isolated and the structure of the gene will be determined. Both genomic and cDNA libraries will be constructed from patients with type I and type II hereditary angioedemia; C1 inhibitor clones will be isolated and their structure determined and compared with the normal. Synthesis studies of C1 inhibitor by monocytes in vitro will help to define the level of the defects, and eventually transfection studies with genes coding for the normal and dysfunctional proteins will define possible control regions in the gene.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
1R01HD022082-01A1
Application #
3321398
Study Section
Allergy and Immunology Study Section (ALY)
Project Start
1987-04-01
Project End
1990-03-31
Budget Start
1987-04-01
Budget End
1988-03-31
Support Year
1
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Mejia, Pedro; Diez-Silva, Monica; Kamena, Faustin et al. (2016) Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors. J Infect Dis 213:80-9
Davis 3rd, Alvin E (2008) Hereditary angioedema: a current state-of-the-art review, III: mechanisms of hereditary angioedema. Ann Allergy Asthma Immunol 100:S7-12
Liu, Dongxu; Lu, Fengxin; Qin, Gangjian et al. (2007) C1 inhibitor-mediated protection from sepsis. J Immunol 179:3966-72
Davis 3rd, Alvin E (2006) Mechanism of angioedema in first complement component inhibitor deficiency. Immunol Allergy Clin North Am 26:633-51
Liu, Dongxu; Zhang, Dong; Scafidi, Jennifer et al. (2005) C1 inhibitor prevents Gram-negative bacterial lipopolysaccharide-induced vascular permeability. Blood 105:2350-5
Liu, Dongxu; Cramer, Cort C; Scafidi, Jennifer et al. (2005) N-linked glycosylation at Asn3 and the positively charged residues within the amino-terminal domain of the c1 inhibitor are required for interaction of the C1 Inhibitor with Salmonella enterica serovar typhimurium lipopolysaccharide and lipid A. Infect Immun 73:4478-87
Liu, Dongxu; Gu, Xiaogang; Scafidi, Jennifer et al. (2004) N-linked glycosylation is required for c1 inhibitor-mediated protection from endotoxin shock in mice. Infect Immun 72:1946-55
Cai, Shenghe; Davis 3rd, Alvin E (2003) Complement regulatory protein C1 inhibitor binds to selectins and interferes with endothelial-leukocyte adhesion. J Immunol 171:4786-91
Liu, Dongxu; Cai, Shenghe; Gu, Xiaogang et al. (2003) C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. J Immunol 171:2594-601
Han, Eun D; MacFarlane, Ryan C; Mulligan, Aideen N et al. (2002) Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest 109:1057-63

Showing the most recent 10 out of 42 publications