Vitamin A, retinol, is an essential nutrient that serves as precursor to the important hormone, retinoic acid (RA). Relatively little is known of the control of synthesis of RA from retinol in the normal, fully-developed animal and sites of action of RA are inferred, rather than demonstrated. Previous work has identified estrogen as a physiological signal which induces the synthesis of RA in the rat uterus and that coordinately directs cell-specific expression of the three cellular retinoid-binding proteins present in the uterus during the estrous cycle. Proposed studies will: l) Identify uterine genes that are under estrogen control indirectly, via RA stimulation. The techniques of differential display or subtractive hybridization followed by library screening or will be used to identify these genes. Candidate genes will be followed during the estrous cycle to confirm their physiological significance. 2) Demonstrate the site(s) of expression of the estrogen-stimulated RA responsive genes by in situ hybridization and immunolocalization during the estrous cycle. Demonstration of expression/non-expression of candidate genes in cells expressing cellular retinoic acid-binding protein will test the competing hypotheses that this protein either blocks or enhances the RA responsiveness of cells. 3) Establish the mechanism by which estrogen directly regulates cellular retinoic-acid binding protein (II) expression in the uterus. The promoter region of the rat gene will be cloned, dissected and tested using CAT reporter constructs in an estrogen responsive cell line. 4) Demonstrate the mechanism by which estrogen induces RA synthesis in the uterus. Specifically, is this induction a direct effect of estrogen on pre-existing enzymes, does it require transcription, or is it indirect? A novel radioreceptor assay capable of detecting small amounts of RA has been developed for this aim. In summary, the work to be accomplished here will allow dissection of the effects of the demonstrated estrogen-stimulated synthesis of RA signal that is part of a normal physiological process. This will provide important information on retinoic acid action in the unmanipulated, intact animal. Regulation of retinoic acid production by estrogen has direct importance for understanding/treating conditions such as endometriosis, breast cancer, and cancers of the female reproductive system.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD025206-13
Application #
6636836
Study Section
Nutrition Study Section (NTN)
Program Officer
Yoshinaga, Koji
Project Start
1989-09-30
Project End
2005-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
13
Fiscal Year
2003
Total Cost
$237,825
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Li, Xiao-Hong; Kakkad, Bharati; Ong, David E (2004) Estrogen directly induces expression of retinoic acid biosynthetic enzymes, compartmentalized between the epithelium and underlying stromal cells in rat uterus. Endocrinology 145:4756-62
Li, Xiao-Hong; Ong, David E (2003) Cellular retinoic acid-binding protein II gene expression is directly induced by estrogen, but not retinoic acid, in rat uterus. J Biol Chem 278:35819-25
Rexer, Brent N; Ong, David E (2002) A novel short-chain alcohol dehydrogenase from rats with retinol dehydrogenase activity, cyclically expressed in uterine epithelium. Biol Reprod 67:1555-64
Lareyre, J J; Winfrey, V P; Kasper, S et al. (2001) Gene duplication gives rise to a new 17-kilodalton lipocalin that shows epididymal region-specific expression and testicular factor(s) regulation. Endocrinology 142:1296-308
Zheng, W L; Sierra-Rivera, E; Luan, J et al. (2000) Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells. Endocrinology 141:802-8
Ruff, S J; Ong, D E (2000) Cellular retinoic acid binding protein is associated with mitochondria. FEBS Lett 487:282-6
Zheng, W L; Bucco, R A; Sierra-Rievera, E et al. (1999) Synthesis of retinoic acid by rat ovarian cells that express cellular retinoic acid-binding protein-II. Biol Reprod 60:110-4
Kingma, P B; Bok, D; Ong, D E (1998) Bovine epidermal fatty acid-binding protein: determination of ligand specificity and cellular localization in retina and testis. Biochemistry 37:3250-7
Zheng, W L; Ong, D E (1998) Spatial and temporal patterns of expression of cellular retinol-binding protein and cellular retinoic acid-binding proteins in rat uterus during early pregnancy. Biol Reprod 58:963-70
Lareyre, J J; Mattei, M G; Kasper, S et al. (1998) Structure and putative function of a murine epididymal retinoic acid-binding protein (mE-RABP). J Reprod Fertil Suppl 53:59-65

Showing the most recent 10 out of 25 publications