The objective of this proposal is to study the function of Mullerian inhibiting substance (MIS), a member of the TGF-beta gene family, during the development of the mammalian reproductive system. During male development, the fetal testes produce MIS which actively induce the regression of the Mullerian ducts, thereby precluding Mullerian duct differentiation into a uterus, oviducts, and upper vagina. other likely male-specific functions for MIS include roles in testicular differentiation and descent, and spermatogenesis. MIS is also expressed in females in the granulosa cells of the postnatal ovary suggesting that MIS may regulate oogenesis. Our own experiments with transgenic mice chronically expressing human MIS suggest that proper MIS function is critical for the development of the male and female reproductive systems (Behringer et al., 1990). We are interested in addressing basic questions in reproductive biology that focus upon the MIS hormone. What are the potential functions of this hormone? What are its required functions during normal development and what roles can this hormone play during abnormal development? We propose in vivo experiments using transgenic mice to address these questions. We have already generated transgenic mice chronically expressing human MIS and also MIS-deficient mice by gene targeting in mouse embryonic stem (ES) cells. These MIS overexpressing and MIS- deficient mice will allow us to directly study the in vivo functions of this growth and differentiation factor during development and disease of the mammalian reproductive system.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD030284-02
Application #
2202600
Study Section
Human Embryology and Development Subcommittee 1 (HED)
Project Start
1994-01-01
Project End
1998-12-31
Budget Start
1995-01-01
Budget End
1995-12-31
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Genetics
Type
Other Domestic Higher Education
DUNS #
001910777
City
Houston
State
TX
Country
United States
Zip Code
77030
Mullen, Rachel D; Wang, Ying; Liu, Bin et al. (2018) Osterix functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression. Proc Natl Acad Sci U S A 115:8382-8387
Nolte, Mark J; Wang, Ying; Deng, Jian Min et al. (2014) Functional analysis of limb transcriptional enhancers in the mouse. Evol Dev 16:207-23
Huang, Cheng-Chiu; Orvis, Grant D; Kwan, Kin Ming et al. (2014) Lhx1 is required in Müllerian duct epithelium for uterine development. Dev Biol 389:124-36
Yen, Shuo-Ting; Zhang, Min; Deng, Jian Min et al. (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393:3-9
Janovick, Jo Ann; Stewart, M David; Jacob, Darla et al. (2013) Restoration of testis function in hypogonadotropic hypogonadal mice harboring a misfolded GnRHR mutant by pharmacoperone drug therapy. Proc Natl Acad Sci U S A 110:21030-5
Kim, Tae Hoon; Lee, Dong-Kee; Cho, Sung-Nam et al. (2013) Critical tumor suppressor function mediated by epithelial Mig-6 in endometrial cancer. Cancer Res 73:5090-9
Pawar, Sandeep; Starosvetsky, Elina; Orvis, Grant D et al. (2013) STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol 27:1996-2012
Laronda, Monica M; Unno, Kenji; Ishi, Kazutomo et al. (2013) Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium. Dev Biol 381:5-16
Imuta, Yu; Kiyonari, Hiroshi; Jang, Chuan-Wei et al. (2013) Generation of knock-in mice that express nuclear enhanced green fluorescent protein and tamoxifen-inducible Cre recombinase in the notochord from Foxa2 and T loci. Genesis 51:210-8
Stewart, C Allison; Wang, Ying; Bonilla-Claudio, Margarita et al. (2013) CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol 27:1442-54

Showing the most recent 10 out of 107 publications