This proposal requests the continuation of R01-HD33442, part of the applicant's ongoing research program focused on how the diverse characteristics of vertebrate neurons are generated and maintained throughout life. Neuronal differentiation is controlled in part by the coordinated expression of DNA binding transcription factors in very specific times and places during neural development. The focus of the current study is the POU-domain factor Brn3a (Brn3.0, Pou4f1), expressed in primary sensory neurons at all axial levels and in selected neurons of the retina, diencephalon, brainstem and spinal cord. Targeted disruption of Brn3a in mice results in loss of neurons in the sensory ganglia and some CNS nuclei, followed by neonatal death. In the current award period we have identified a sensory-specific enhancer region of the Brn3a gene, and used reporter genes targeted by this enhancer to show marked defects in sensory axon growth in Brn3a knockout mice. We have also demonstrated that Brn3a acts as a negative regulator of its own expression, and that partial relief of this negative regulation in heterozygotes leads to nearly complete compensation for the defective allele. In further studies, we have used microarrays to perform a global assay of changes in gene expression in the sensory ganglia of Brn3a null mice, revealing the coordinated regulation of neurotransmitter systems, axonal components, and transcription factors by Brn3a.
The Specific Aims of this proposal are: 1) Use transgenic mice expressing the axonal tracer tauLacZ from the Brn3a locus to examine the CNS projections of Brn3a-expressing retinal ganglion cells, and determine whether the targeting of these axons to specific thalamic structures is dependent on early spontaneous depolarizations in the retina. 2) Use Brn3a/tauLacZ mice and microarray analysis of embryonic tissue in wild-type and mutant animals to determine the role of Brn3a in development and gene regulation in the habenula. 3) Use targeted insertion of a reporter gene into BAG clones derived from the mouse genome project to identify enhancer sequences directing Brn3a expression to the CNS. 4) Use locus-wide, real-time PCR-based chromatin immunoprecipitation assays, as well as database analysis and conventional protein-DNA interaction methodology, to define the regulatory inputs that direct Brn3a expression to primary sensory neurons throughout the neural axis. Together these aims will make a substantial contribution to understanding the basic mechanisms of neuronal development and advance our knowledge of the many neurological and behavioral illnesses which have a genetic or developmental component.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-K (94))
Program Officer
Henken, Deborah B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Seattle Children's Hospital
United States
Zip Code
Rosin, Jessica M; Li, Wenjie; Cox, Liza L et al. (2016) A distal 594?bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex. Development 143:2582-92
Huang, Siyi; O'Donovan, Kevin J; Turner, Eric E et al. (2015) Extrinsic and intrinsic signals converge on the Runx1/CBF? transcription factor for nonpeptidergic nociceptor maturation. Elife 4:e10874
Cox, Timothy C; Camci, Esra D; Vora, Siddharth et al. (2014) The genetics of auricular development and malformation: new findings in model systems driving future directions for microtia research. Eur J Med Genet 57:394-401
Quina, Lely A; Tempest, Lynne; Hsu, Yun-Wei A et al. (2012) Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion. Dev Biol 365:152-63
Quina, Lely A; Kuramoto, Takashi; Luquetti, Daniela V et al. (2012) Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a newly identified cause of congenital ear malformation. Dis Model Mech 5:812-22
Dykes, Iain M; Tempest, Lynne; Lee, Su-In et al. (2011) Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J Neurosci 31:9789-99
Dykes, Iain M; Lanier, Jason; Eng, S Raisa et al. (2010) Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation. Neural Dev 5:3
Wang, Shirong; Turner, Eric E (2010) Expression of dopamine pathway genes in the midbrain is independent of known ETS transcription factor activity. J Neurosci 30:9224-7
McCarthy, Michael J; Barrett, Thomas B; Nissen, Stephanie et al. (2010) Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients. J Psychiatr Res 44:201-8
Lanier, Jason; Dykes, Iain M; Nissen, Stephanie et al. (2009) Brn3a regulates the transition from neurogenesis to terminal differentiation and represses non-neural gene expression in the trigeminal ganglion. Dev Dyn 238:3065-79

Showing the most recent 10 out of 26 publications