The proposed experiments are designed to elucidate the regulatory mechanisms underlying androgen biosynthesis in theca interna cells from ovaries of normal cycling women and women with polycystic ovary syndrome (PCOS). During the past funding period, we obtained exciting data demonstrating that increased androgen production and augmented P450 17alpha-hydroxylase (CYP17) gene expression in PCOS theca cells results from a combined reduction in the activation state of the MEK1/ERK pathway and a stimulation in the activation state of the MKK3 pathway. We have observed that infection of normal theca cells with adenovirus expressing dominant negative MEK1 and constitutively active MKK3 recapitulates a PCOS theca cell phenotype. We now have the tools to fully explore the contributions of the other components of the MAPK signaling pathways. In this proposal we will test the hypothesis that increased ovarian androgen production is a consequence of altered mitogen activated protein kinase (MAPK) signaling in PCOS theca cells.
Aim 1 studies are designed to investigate whether dysregulation of upstream signaling component(s) of the ERK and p38 signaling pathway(s) (i.e., Raf-1, MEKK1, MEKK3) directly affect the down stream signaling components of each homologous pathway to the extent that CYP17 and CYP11A1 gene expression, and androgen biosynthesis are up-regulated in PCOS theca cells. We will also examine whether dysregulation of signaling components from one pathway result(s) in compensatory changes in signaling through parallel pathway(s).
In Aim 2 we will investigate the extent to which alterations in ERK and p38 signaling contribute to increased CYP17 and CYP11A1 gene transcription and mRNA stability in PCOS theca cells. Throughout the literature there are data to support that tumor necrosis factor a (TNF) inhibits thecal CYP17 gene expression and androgen biosynthesis. However, these data are contradictory with the observation that PCOS women have elevated circulating plasma and follicular fluid levels of TNF.
In Aim 3, we will examine the extent to which defects in MAPK signaling in PCOS theca cells affects TNF-dependent regulation of androgen biosynthesis. Results of these studies will provide both new insights regarding the cause and molecular basis for increased ovarian androgen production, and lead to the development of new targets for treatment of women with PCOS.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD033852-10
Application #
7222639
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Taymans, Susan
Project Start
1997-04-01
Project End
2011-02-28
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
10
Fiscal Year
2007
Total Cost
$265,654
Indirect Cost
Name
Pennsylvania State University
Department
Physiology
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Tee, Meng Kian; Speek, Mart; Legeza, Balázs et al. (2016) Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2. Mol Cell Endocrinol 434:25-35
McAllister, Jan M; Legro, Richard S; Modi, Bhavi P et al. (2015) Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 26:118-24
McAllister, Jan M; Modi, Bhavi; Miller, Bruce A et al. (2014) Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci U S A 111:E1519-27
Wickenheisser, Jessica K; Biegler, Jessica M; Nelson-Degrave, Velen L et al. (2012) Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS One 7:e48963
Ewens, Kathryn G; Stewart, Douglas R; Ankener, Wendy et al. (2010) Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab 95:2306-15
Wickenheisser, Jessica K; Nelson-DeGrave, Velen L; McAllister, Jan M (2006) Human ovarian theca cells in culture. Trends Endocrinol Metab 17:65-71
Wickenheisser, Jessica K; Nelson-Degrave, Velen L; McAllister, Jan M (2005) Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:1720-7
Nelson-Degrave, Velen L; Wickenheisser, Jessica K; Hendricks, Karen L et al. (2005) Alterations in mitogen-activated protein kinase kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome. Mol Endocrinol 19:379-90
Wickenheisser, Jessica K; Nelson-DeGrave, Velen L; Hendricks, Karen L et al. (2005) Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:4858-65
Nelson-DeGrave, Velen L; Wickenheisser, Jessica K; Cockrell, Jennifer E et al. (2004) Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 145:799-808

Showing the most recent 10 out of 15 publications