There is a spectrum of involvement in those with the FMR1 premutation that ranges from developmental problems in childhood and psychopathology in adulthood to neurodegeneration in aging;the latter includes the Fragile X-associated Tremor Ataxia Syndrome (FXTAS) that we have identified with our Australian collaborators. However, some individuals with the premutation have no overt clinical involvement, whereas others experience mild or severe deficits in childhood, adulthood or aging. Typically, the developmental problems are thought to be related to FMRP deficits, whereas the aging problems to RNA toxicity secondary to elevated FMR1-mRNA. We will assess the influence of specific domains of molecular/cellular dysfunction, including mitochondrial dysfunction, inter-tissue (lymphocyte-fibroblast) mosaicism, occult methylation, and increases of disease-associated antisense FMR1 (ASFM1) isoforms on the nature and degree of the clinical phenotypes in both children and adults who are carriers of premutation alleles. Specific clinical outcome measures will be used that can document mild to severe involvement in the neurocognitive, motor and psychiatric realms. We will assess 189 patients (10 to 30 years) including 63 carriers who are affected, 63 who have normal development (asymptomatic) and 63 normal controls matched on age and sex to define the relationship between the severity of premutation developmental problems, including cognitive, motor and social deficits, and the presence of specific molecular abnormalities (Specific Aim 1). We will extend these studies to characterize the nature and severity of molecular dysfunction in adults with the premutation who have psychiatric and/or neurological dysfunction but do not meet clinical criteria for FXTAS (Specific Aim 2);we will recruit 201 patients (30 to 65y), divided between carriers who are affected with neurological or psychiatric problems, asymptomatic carriers, and controls matched for age and sex. We will determine whether the spectrum of clinical involvement in premutation adults is paralleled by severity of molecular dysregulation or whether the molecular features of FXTAS are distinct, and whether early biomarkers can be identified to use in future treatment endeavors. Lastly we will utilize sensitive neuroimaging techniques (diffusion tensor imaging;DTI) to assess involvement in adults with the premutation to determine the degree of concordance between the loss of integrity of fiber tracts in white matter and the severity of the mitochondrial dysfunction in adul carriers with psychiatric and/or neurological problems compared to unaffected carriers and controls (Specific Aim 3). This work will continue to include the Australia team, who will carry ou the occult methylation studies on blood and fibroblasts for all patients seen at both sites, in addition to limited recruitment for Aims 1 and 2. Our studies will provide biomarkers of early involvement and lay the basis for treatments such as mitochondrial based interventions, targeted treatment for low FMRP, or medications that block RNA toxicity early on.

Public Health Relevance

The premutation is common in the general population (approximately 1 in 130-810) and it can cause developmental problems including intellectual deficits and autism spectrum disorders, adult psychiatric disorders and neurological problems in aging including the fragile X-associated tremor ataxia syndrome (FXTAS). However, most individuals with the premutation are unaffected and we do not know why some individuals with the premutation suffer from these problems and others do not. This grant will assess detailed molecular mechanisms including mitochondrial abnormalities, mosaicism between the lymphocytes and fibroblasts, the antisense FMR1 (ASFMR1) splice isoforms and occult methylation to determine the molecular markers of premutation clinical involvement.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD036071-15
Application #
8463223
Study Section
Child Psychopathology and Developmental Disabilities Study Section (CPDD)
Program Officer
Urv, Tiina K
Project Start
1998-06-15
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
15
Fiscal Year
2013
Total Cost
$565,457
Indirect Cost
$170,657
Name
University of California Davis
Department
Pediatrics
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Shelton, Annie L; Wang, Jun Y; Fourie, Emily et al. (2018) Middle Cerebellar Peduncle Width-A Novel MRI Biomarker for FXTAS? Front Neurosci 12:379
Napoli, Eleonora; Schneider, Andrea; Wang, Jun Yi et al. (2018) Allopregnanolone Treatment Improves Plasma Metabolomic Profile Associated with GABA Metabolism in Fragile X-Associated Tremor/Ataxia Syndrome: a Pilot Study. Mol Neurobiol :
Loesch, Danuta Z; Tassone, Flora; Mellick, George D et al. (2018) Evidence for the role of FMR1 gray zone alleles as a risk factor for parkinsonism in females. Mov Disord 33:1178-1181
Wang, Xiao-Hong; Yang, Jin-Chen; Soohoo, Robert et al. (2018) Cognitive Deficits and Associated ERP N400 Abnormalities in FXTAS With Parkinsonism. Front Genet 9:327
Ligsay, Andrew; El-Deeb, Marwa; Salcedo-Arellano, Maria J et al. (2018) General Anesthetic Use in Fragile X Spectrum Disorders. J Neurosurg Anesthesiol :
Martínez Cerdeño, Verónica; Hong, Tiffany; Amina, Sarwat et al. (2018) Microglial cell activation and senescence are characteristic of the pathology FXTAS. Mov Disord :
Jacquemont, Sébastien; Pacini, Laura; Jønch, Aia E et al. (2018) Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet 27:2039-2051
Shickman, Ryan; Famula, Jessica; Tassone, Flora et al. (2018) Age- and CGG repeat-related slowing of manual movement in fragile X carriers: A prodrome of fragile X-associated tremor ataxia syndrome? Mov Disord 33:628-636
Martínez-Cerdeño, Verónica; Lechpammer, Mirna; Noctor, Stephen et al. (2017) FMR1 premutation with Prader-Willi phenotype and fragile X-associated tremor/ataxia syndrome. Clin Case Rep 5:625-629
Ariza, Jeanelle; Rogers, Hailee; Hartvigsen, Anna et al. (2017) Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 32:585-591

Showing the most recent 10 out of 251 publications