The piRNA pathway has a conserved role in transposon silencing and genome maintenance during germline development. Adaptation to new genome pathogens by the Drosophila piRNA genome defense system appears to be driven by transposition into heterochromatic clusters, which produce the primary piRNAs that to initiate silencing. The HP1 homolog Rhino binds to clusters and is evolving rapidly under positive selection, suggesting that it may co-evolve with invading mobile elements. piRNA clusters and Rhino thus function at the adaptive interface between the piRNA pathway and transposons.
Aims1 and 2 combine evolutionary divergence and conservation with genetic, genomic, computational and cytological tools to define this critical interface. The ability to differentiate cluster transcripts from mRNAs is critical to the specificity of the piRNA dense system, and our recent data suggest that stalled spicing may mark cluster transcripts for processing into silencing RNAs.
Aim 3 focuses on the role of splicing in piRNA precursor sorting into the silencing pathway. These studies address mechanisms that maintain the inherited genome and are likely to directly impact reproductive health.

Public Health Relevance

Germline transmission of an unaltered genome is essential to species propagation. Transposons make up close to half of the human genome, and these mobile elements can induce mutations and represent a major treat to genome integrity. The piRNA pathway is an adaptive genome defense system that controls existing transposons and responds to new elements that invade the germline. The proposed studies address the basic mechanisms that allow this system to respond to invading genome pathogens, which is critical to reproductive health.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD049116-15
Application #
9618501
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Taymans, Susan
Project Start
2014-12-06
Project End
2020-04-20
Budget Start
2018-12-01
Budget End
2020-04-20
Support Year
15
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Yu, Bowen; Lin, Yu An; Parhad, Swapnil S et al. (2018) Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification. EMBO Rep 19:
Zhang, Gen; Tu, Shikui; Yu, Tianxiong et al. (2018) Co-dependent Assembly of Drosophila piRNA Precursor Complexes and piRNA Cluster Heterochromatin. Cell Rep 24:3413-3422.e4
Parhad, Swapnil S; Tu, Shikui; Weng, Zhiping et al. (2017) Adaptive Evolution Leads to Cross-Species Incompatibility in the piRNA Transposon Silencing Machinery. Dev Cell 43:60-70.e5
Zhuang, Jiali; Wang, Jie; Theurkauf, William et al. (2014) TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 42:6826-38
Zhang, Zhao; Koppetsch, Birgit S; Wang, Jie et al. (2014) Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin. EMBO J 33:536-9
Zhang, Zhao; Wang, Jie; Schultz, Nadine et al. (2014) The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157:1353-63
Simkin, Alfred; Wong, Alex; Poh, Yu-Ping et al. (2013) Recurrent and recent selective sweeps in the piRNA pathway. Evolution 67:1081-90
Perrat, Paola N; DasGupta, Shamik; Wang, Jie et al. (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340:91-5
Zhang, Fan; Wang, Jie; Xu, Jia et al. (2012) UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151:871-884
Zhang, Zhao; Theurkauf, William E; Weng, Zhiping et al. (2012) Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence 3:9

Showing the most recent 10 out of 20 publications