Hormonal status and vaginal function are closely linked. Diminished reproductive hormones at menopause lead to vaginal atrophy and dryness. Menopause is often accompanied by dysesthetic vulvodynia, a pain syndrome consisting of burning and itching. Together with vulvar vestibulitis, an allodynia-like syndrome linked to early oral contraceptive use, vulvodynia represents an under-recognized but significant health problem, afflicting some 16% of the adult US female population. The etiology of these syndromes is poorly understood, although vulvar vestibulitis is associated with increased numbers of pain-sensing fibers. No animal models have been available to provide a better framework of understanding. Recently, we showed that estrogen regulates vaginal innervation in rats. Ovariectomy, which approximates human menopause, dramatically increases numbers of vaginal sensory nociceptors, as well as sympathetic and parasympathetic axons. We hypothesize that this is due to modulation of trophic factor release from vaginal tissues, and that altered innervation will influence key aspects of vaginal function, including blood flow, vascular permeability, and pain sensitivity.
In aim 1 we propose to characterize the relationship between hormonal status and vaginal innervation in rats during the estrous cycle, pregnancy, and adult and juvenile hormone administration. We also determine if human vaginal innervation varies with hormonal state.
Aim 2 assesses cellular mechanisms underlying axonal remodeling by determining effects of reproductive hormones on vaginal target tissue and on sensory and autonomic neurons.
Aim 3 examines molecular mechanisms mediating vaginal remodeling by investigating expression and functional relevance of potential trophic factors.
In aim 4, we assess the functional significance of vaginal nerve remodeling on blood flow, neurogenic inflammation and behavioral avoidance of painful stimuli. These studies are conducted using methods in cell biology, tissue culture, molecular biology, physiology, pharmacology and behavior. The findings of these experiments will provide insight into mechanisms underlying hormone-dependent remodeling of vaginal innervation, and whether altered innervation may contribute to vaginal dysfunction. Moreover, these studies will provide a better understanding of the relationship between vaginal nerve plasticity and vulvodynia, and potentially lead to new therapeuties aimed at reversing vaginal sensory hyperinnervation.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD049615-04
Application #
7565889
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Parrott, Estella C
Project Start
2006-04-16
Project End
2011-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
4
Fiscal Year
2009
Total Cost
$261,229
Indirect Cost
Name
University of Kansas
Department
Physiology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Chakrabarty, Anuradha; Liao, Zhaohui; Mu, Ying et al. (2018) Inflammatory Renin-Angiotensin System Disruption Attenuates Sensory Hyperinnervation and Mechanical Hypersensitivity in a Rat Model of Provoked Vestibulodynia. J Pain 19:264-277
Liao, Zhaohui; Chakrabarty, Anuradha; Mu, Ying et al. (2017) A Local Inflammatory Renin-Angiotensin System Drives Sensory Axon Sprouting in Provoked Vestibulodynia. J Pain 18:511-525
Bhattacherjee, Aritra; Mu, Ying; Winter, Michelle K et al. (2017) Neuronal cytoskeletal gene dysregulation and mechanical hypersensitivity in a rat model of Rett syndrome. Proc Natl Acad Sci U S A 114:E6952-E6961
Bhattacherjee, Aritra; Winter, Michelle K; Eggimann, Linda S et al. (2017) Motor, Somatosensory, Viscerosensory and Metabolic Impairments in a Heterozygous Female Rat Model of Rett Syndrome. Int J Mol Sci 19:
Mónica Brauer, M; Smith, Peter G (2015) Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 187:1-17
Tague, S E; Smith, P G (2014) Vitamin D deficiency leads to sensory and sympathetic denervation of the rat synovium. Neuroscience 279:77-93
Liao, Zhaohui; Smith, Peter G (2014) Persistent genital hyperinnervation following progesterone administration to adolescent female rats. Biol Reprod 91:144
Doss, Argenia L N; Smith, Peter G (2014) Langerhans cells regulate cutaneous innervation density and mechanical sensitivity in mouse footpad. Neurosci Lett 578:55-60
Bhattacherjee, Aritra; Liao, Zhaohui; Smith, Peter G (2014) Trophic factor and hormonal regulation of neurite outgrowth in sensory neuron-like 50B11 cells. Neurosci Lett 558:120-5
Chakrabarty, Anuradha; Liao, Zhaohui; Smith, Peter G (2013) Angiotensin II receptor type 2 activation is required for cutaneous sensory hyperinnervation and hypersensitivity in a rat hind paw model of inflammatory pain. J Pain 14:1053-65

Showing the most recent 10 out of 19 publications