The broad, long-term objective is to elucidate the molecular basis of the regulation of muscle contraction by defining the role of each muscle component: actin, tropomyosin (Tm), the troponin components, TnI, TnT, TnC, and myosin. Health Relatedness: This information will help in the understanding of muscle diseases e.g., hypertrophic cardiomyopathy resulting from mutations in Tm, TnT, TnI and myosin and stunned myocardium resulting from coronary artery disease. Tm, in its interaction with actin, plays a key role in determining the equilibria between the 3 states of the muscle thin filament, Blocked/Closed/Open (contraction takes place in the Open state). By interacting with actinTm, the troponin complex and myosin heads change the equilibrium between the states, thereby turning contraction on and off.
The specific aims are to test the hypotheses that: (a) Ca2+ and myosin induce changes in position and conformation of Tm on actin which results in a shift of the equilibrium toward the Open biochemical state, thereby allowing contraction; (b) in the absence of Ca2+, TnI, interacts with Tm in addition to actin, to stabilize the thin filament in the Blocked-state; (c) TnT: (i) inhibits actinTm-S1 ATPase by altering Tm conformation, (ii) increases the cooperativity between actinTm units, (iii) interacts differently with Tm in each of the 3 biochemical states; (d) Tm movement to the thin filament On-activity state (Open-state) occurs during myosin binding after Ca2+-induced TnI dissociation from actin; (e) the two heads of HMM act cooperatively to shift actinTm from the Closed to the Open-state; (f) mutants of Tm found in patients with FHC alter the equilibria between the 3 biochemical states of the thin filament thereby affecting contraction. Methods: In addition to characterization of the 3 states in solution with ATPase, myosin titrations and stopped-flow techniques, extensive use will be made of high resolution distance measurements between components with time-resolved fluorescence energy transfer.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL022461-23
Application #
6499129
Study Section
Biophysical Chemistry Study Section (BBCB)
Program Officer
Reinlib, Leslie
Project Start
1978-04-01
Project End
2005-01-31
Budget Start
2002-02-01
Budget End
2003-01-31
Support Year
23
Fiscal Year
2002
Total Cost
$519,631
Indirect Cost
Name
Boston Biomedical Research Institute
Department
Type
DUNS #
058893371
City
Watertown
State
MA
Country
United States
Zip Code
02472
Janco, Miro; Suphamungmee, Worawit; Li, Xiaochuan et al. (2013) Polymorphism in tropomyosin structure and function. J Muscle Res Cell Motil 34:177-87
Mudalige, Wasana A K A; Tao, Terence C; Lehrer, Sherwin S (2009) Ca2+-dependent photocrosslinking of tropomyosin residue 146 to residues 157-163 in the C-terminal domain of troponin I in reconstituted skeletal muscle thin filaments. J Mol Biol 389:575-83
Sumida, John P; Wu, Eleanor; Lehrer, Sherwin S (2008) Conserved Asp-137 imparts flexibility to tropomyosin and affects function. J Biol Chem 283:6728-34
Bacchiocchi, Corrado; Graceffa, Philip; Lehrer, Sherwin S (2004) Myosin-induced movement of alphaalpha, alphabeta, and betabeta smooth muscle tropomyosin on actin observed by multisite FRET. Biophys J 86:2295-307
Chen, Yaodong; Lehrer, Sherwin S (2004) Distances between tropomyosin sites across the muscle thin filament using luminescence resonance energy transfer: evidence for tropomyosin flexibility. Biochemistry 43:11491-9
Bacchiocchi, Corrado; Lehrer, Sherwin S (2002) Ca(2+)-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET. Biophys J 82:1524-36
Geeves, Michael A; Lehrer, Sherwin S (2002) Cooperativity in the Ca2+ regulation of muscle contraction. Results Probl Cell Differ 36:111-32
Maytum, R; Konrad, M; Lehrer, S S et al. (2001) Regulatory properties of tropomyosin effects of length, isoform, and N-terminal sequence. Biochemistry 40:7334-41
Suarez, M C; Lehrer, S S; Silva, J L (2001) Local heterogeneity in the pressure denaturation of the coiled-coil tropomyosin because of subdomain folding units. Biochemistry 40:1300-7
Zhou, X; Morris, E P; Lehrer, S S (2000) Binding of troponin I and the troponin I-troponin C complex to actin-tropomyosin. Dissociation by myosin subfragment 1. Biochemistry 39:1128-32

Showing the most recent 10 out of 42 publications