Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL037374-01
Application #
3352958
Study Section
Cardiovascular and Pulmonary Research B Study Section (CVB)
Project Start
1987-01-01
Project End
1991-12-31
Budget Start
1987-01-01
Budget End
1987-12-31
Support Year
1
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
Schools of Medicine
DUNS #
073134603
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Frisbee, Jefferson C; Butcher, Joshua T; Frisbee, Stephanie J et al. (2016) Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol 310:H488-504
Wang, Jingli; Maier, Kristopher G; Roman, Richard J et al. (2004) Expression of cytochrome P450-4A isoforms in the rat cremaster muscle microcirculation. Microcirculation 11:89-96
Lombard, Julian H; Sylvester, Francis A; Phillips, Shane A et al. (2003) High-salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 284:H1124-33
Liu, Yanping; Harder, David R; Lombard, Julian H (2002) Interaction of myogenic mechanisms and hypoxic dilation in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 283:H2276-81
Frisbee, Jefferson C; Lombard, Julian H (2002) Parenchymal tissue cytochrome P450 4A enzymes contribute to oxygen-induced alterations in skeletal muscle arteriolar tone. Microvasc Res 63:340-3
Sylvester, Francis A; Stepp, David W; Frisbee, Jefferson C et al. (2002) High-salt diet depresses acetylcholine reactivity proximal to NOS activation in cerebral arteries. Am J Physiol Heart Circ Physiol 283:H353-63
Frisbee, Jefferson C; Maier, Kristopher G; Falck, John R et al. (2002) Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries. Am J Physiol Regul Integr Comp Physiol 283:R309-19
Weber, D S; Lombard, J H (2001) Angiotensin II AT1 receptors preserve vasodilator reactivity in skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 280:H2196-202
Frisbee, J C; Roman, R J; Murali Krishna, U et al. (2001) Altered mechanisms underlying hypoxic dilation of skeletal muscle resistance arteries of hypertensive versus normotensive Dahl rats. Microcirculation 8:115-27
Kunert, M P; Roman, R J; Alonso-Galicia, M et al. (2001) Cytochrome P-450 omega-hydroxylase: a potential O(2) sensor in rat arterioles and skeletal muscle cells. Am J Physiol Heart Circ Physiol 280:H1840-5

Showing the most recent 10 out of 57 publications