The plasma membrane (sarcolemma) of cardiac myocytes has high levels of Na+-Ca2+ exchange activity. Na+- Ca2+ exchange is an important regulator of intracellular Ca2+ and thus a major determinant of myocardial contractility. Na+-Ca2+ exchange is upregulated and may take on added significance during hypertrophy and heart failure. It is important to investigate the structure and molecular properties of the cardiac Na+-Ca2+ exchange molecule to gain understanding of the role of the exchanger in physiology and pathophysiology. Towards this goal, the specific aims of the proposal are as follows: 1. Structure and Regulation. The Na+-Ca2+ exchanger is regulated by nontransported intracellular Ca2+. The structure of the Ca2+ regulatory site has recently been determined. The goals are twofold: a. Determine the structures of other segments of the intracellular loop of the Na+-Ca2+ exchanger. b. Apply structural information to understand Ca2+ regulation at the molecular level. 2. Helix Packing, Dimerization, and Transport Pathway.
The aim i s to further investigate the packing arrangement of transmembrane segments within the Na+-Ca2+ exchanger and between exchanger dimers. Mutational approaches will be used to understand the ion translocation mechanism and pathway. 3. Application of Fluorescent Resonance Energy Transfer (FRET) to Study the Na+-Ca2+ Exchanger.
The aim i s to apply FRET to investigate conformational changes of the exchanger in vitro, in cells, and in a living organism. FRET will also be applied to investigate dimerization of the exchanger. The underlying hypothesis is that increased knowledge of the structure, function, and regulation of the Na+- Ca2+ exchanger molecule will directly lead to a better understanding of the role of the exchanger in physiological and pathophysiological settings. The increased knowledge will perhaps have pharmacological and clinical applications.

Public Health Relevance

The Na+-Ca2+ exchanger regulates myocardial Ca2+ levels and therefore is an important determinant of the strength of cardiac contraction. It is essential to understand regulation and function of the Na+-Ca2+ exchanger in situations of altered Ca2+ handling, such as heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL049101-19
Application #
8033710
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Przywara, Dennis
Project Start
1993-04-01
Project End
2012-09-30
Budget Start
2011-03-01
Budget End
2012-09-30
Support Year
19
Fiscal Year
2011
Total Cost
$560,599
Indirect Cost
Name
University of California Los Angeles
Department
Physiology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Ren, Xiaoyan; Philipson, Kenneth D (2013) The topology of the cardiac Na?/Ca²? exchanger, NCX1. J Mol Cell Cardiol 57:68-71
Besserer, Gabriel Mercado; Nicoll, Debora A; Abramson, Jeff et al. (2012) Characterization and purification of a Na+/Ca2+ exchanger from an archaebacterium. J Biol Chem 287:8652-9
John, Scott A; Ribalet, Bernard; Weiss, James N et al. (2011) Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc Natl Acad Sci U S A 108:1699-704
Wang, JuFang; Gao, Erhe; Song, Jianliang et al. (2010) Phospholemman and beta-adrenergic stimulation in the heart. Am J Physiol Heart Circ Physiol 298:H807-15
Ren, Xiaoyan; Nicoll, Debora A; Xu, Lida et al. (2010) Transmembrane segment packing of the Na(+)/Ca(2+) exchanger investigated with chemical cross-linkers. Biochemistry 49:8585-91
Chaptal, Vincent; Ottolia, Michela; Mercado-Besserer, Gabriel et al. (2009) Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger. J Biol Chem 284:14688-92
Ottolia, Michela; Nicoll, Debora A; Philipson, Kenneth D (2009) Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J Biol Chem 284:32735-41
Ren, Xiaoyan; Nicoll, Debora A; Galang, Giselle et al. (2008) Intermolecular cross-linking of Na+-Ca2+ exchanger proteins: evidence for dimer formation. Biochemistry 47:6081-7
Xie, Yi; Ottolia, Michela; John, Scott A et al. (2008) Conformational changes of a Ca2+-binding domain of the Na+/Ca2+ exchanger monitored by FRET in transgenic zebrafish heart. Am J Physiol Cell Physiol 295:C388-93
Cavalli, Amy; Eghbali, Mansoureh; Minosyan, Tamara Y et al. (2007) Localization of sarcolemmal proteins to lipid rafts in the myocardium. Cell Calcium 42:313-22

Showing the most recent 10 out of 41 publications