Overproduction of apo B-containing lipoproteins by the liver is responsible for a common form of familial combined hyperlipidemia associated with premature cardiovascular disease. Our proposed mechanistic studies in mice will allow us to identify the factors and processes responsible for regulating the secretion of lipoproteins in normal and hyperlipidemic animals and humans. To achieve this goal, we propose the following Specific Aims: 1) To examine the hypothesis that the relative level of expression of MTP and apo B contribute toward determining the maximal capacity of the liver to assemble and secrete apo B-containing lipoproteins. For these studies we will use inbred C57BL/6 mice which have altered expression of MTP and apo B100. 2) To examine the hypothesis that over-production and secretion of apo B-containing lipoproteins is the basis for familial combined hyperlipidemia. Using a novel mutant mouse clone displaying a genotype and phenotype that closely reflects a human form of familial combined hyperlipidemia, we will determine the molecular basis for this common hyperlipidemic disorder. 3) To define the molecular mechanism responsible for the inactivation of the MTP promoter in L35 cells. L35 cells show a phenotype similar to that of livers from abetalipoproteinemics (i.e. genetic loss of MTP expression and an inability to secrete apo B-containing lipoproteins). We will delineate the mechanism responsible for inactivation of the MTP gene in L35 cells using the promoter constructs that we have shown replicates the transcriptional activity of the endogenous MTP gene. 4) To examine the hypothesis that the relative level of expression of MTP, apo B and lipogenic enzymes displayed by individual liver cells varies dynamically with anatomical localization and changes in physiologic and nutritional state. The knowledge gained from our proposed studies in mice will allow us for the first time to determine the physiologic significance of hypotheses formulated from cultured cell models. New insights gained from these proposed studies should be useful in designing diets and pharmacologic agents that may prevent hyperlipidemia and the formation of atherosclerosis in humans.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL051648-07
Application #
6183425
Study Section
Nutrition Study Section (NTN)
Project Start
1994-01-01
Project End
2004-05-31
Budget Start
2000-06-01
Budget End
2001-05-31
Support Year
7
Fiscal Year
2000
Total Cost
$340,261
Indirect Cost
Name
San Diego State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Chen, Junqin; Hui, Simon T; Couto, Francesca M et al. (2008) Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J 22:3581-94
Blasiole, Daniel A; Davis, Roger A; Attie, Alan D (2007) The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst 3:608-19
Spann, Nathanael J; Kang, Sohye; Li, Andrew C et al. (2006) Coordinate transcriptional repression of liver fatty acid-binding protein and microsomal triglyceride transfer protein blocks hepatic very low density lipoprotein secretion without hepatosteatosis. J Biol Chem 281:33066-77
Hui, To Yuen; Sheth, Sonal S; Diffley, J Matthew et al. (2004) Mice lacking thioredoxin-interacting protein provide evidence linking cellular redox state to appropriate response to nutritional signals. J Biol Chem 279:24387-93
Kang, Sohye; Spann, Nathanael J; Hui, To Y et al. (2003) ARP-1/COUP-TF II determines hepatoma phenotype by acting as both a transcriptional repressor of microsomal triglyceride transfer protein and an inducer of CYP7A1. J Biol Chem 278:30478-86
Moss, Arthur J (2003) Long QT Syndrome. JAMA 289:2041-4
Liao, Wei; Hui, To Y; Young, Stephen G et al. (2003) Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J Lipid Res 44:978-85
Hui, To Yuen; Olivier, Lisa M; Kang, Sohye et al. (2002) Microsomal triglyceride transfer protein is essential for hepatic secretion of apoB-100 and apoB-48 but not triglyceride. J Lipid Res 43:785-93
Miyake, J H; Doung, X D; Strauss, W et al. (2001) Increased production of apolipoprotein B-containing lipoproteins in the absence of hyperlipidemia in transgenic mice expressing cholesterol 7alpha-hydroxylase. J Biol Chem 276:23304-11
Baker, D M; Wang, S L; Bell, D J et al. (2000) One or more labile proteins regulate the stability of chimeric mRNAs containing the 3'-untranslated region of cholesterol-7alpha -hydroxylase mRNA. J Biol Chem 275:19985-91

Showing the most recent 10 out of 13 publications