The molecular events that are activated during the response of the heart to reperfusion following ischemia have been the topic of much research. Our laboratory focused on the role for protein kinase C (PKC) in cardiac ischemia. We developed unique pharmacological tools, which provided new insights into the role of several pathways in cardiac reperfusion injury. Some involve more expected players, such as key metabolic enzymes or regulators of mitochondrial dynamics. Others identified unexpected players in the response to reperfusion injury. In this proposal, we describe our plans to investigate our recent finding that a component of the thin filament in the contractile apparatus, cardiac troponin I (cTnI), participates in the acute response to ischemia. A role for cTnI in regulating cardiac contractility is well described, but a role of cTnI in the acute response to ischemia is less expected. We showed that a brief and selective inhibition of ?PKC-mediated phosphorylation of cTnI at the onset of reperfusion is sufficient to greatly inhibit acute reperfusion injury in models of myocardial infarction. Our first hypothesis is that phosphorylated cTnI induces injurious response following ischemia, through a mechanism that may be independent of cTnI's role in contractility. The finding that mutations in cTnI result in severe cardiomyopathy and high incidence of sudden death in humans led to our second hypothesis, that at least some of the 74 mutations in cardiac cTnI that are associated with cardiomyopathy are the result of the novel role of cTnI in the response to ischemia that we discovered. These hypotheses are tested as follows: In the first aim, we will identify the signaling event that is transmitted by cTnI phosphorylation during reperfusion, thus contributing to cardiac injury. To this end, we will use live-cell imaging to determine the timing of cTnI-induced injury, a proteomic study to identify the cTnI interactome and a rational design of protein- protein interaction (PPI) inhibitors to confirm the role of the pathway identified by this study. In the second aim, we will determine if human cTnI mutations leading to CM affect the response to ischemia and reperfusion (IR). To this end, we will generate a structure-function relationship map of human cTnI using population-scale genetic variation data to identify mutation clusters on the cTnI surface that represent different functions of cTnI. We will determine the effect of representative mutations from each mutation cluster on the response to IR- induced injury in cardiac cell lines, adult cardiomyocytes and in transgenic mice. Finally, using iPSC-derived cardiomyocytes, we will determine if at least some of the human CM-associated cTnI mutations increase the sensitivity to ischemic insult by the molecular mechanism identified in Aim 1 and if the novel PPI inhibitors that we develop affect excessive reperfusion injury mediated by the mutations. Together, our work will characterize a new pathway by which reperfusion injury occurs, its potential role in cTnl-associated cardiomyopathy and possibly, a therapeutic approach to prevent or slow down cardiomyopathy in at least some of the patients with cTnI mutations.

Public Health Relevance

Protein kinase C delta is a key mediator of cardiac injury following myocardial infarction. We focus on developing novel pharmacological agents using cardiac cell lines, transgenic mice, patient-derived cardiac cells and a large human genetic data set to identify the mechanism by which the thin filament component in the contractile apparatus, troponin I, contributes to cardiac injury following ischemia and how it may contribute to some genetic forms of cardiomyopathy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL052141-20A1
Application #
9520633
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
1996-04-05
Project End
2022-01-31
Budget Start
2018-05-01
Budget End
2019-01-31
Support Year
20
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Stanford University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Deshwal, Soni; Forkink, Marleen; Hu, Chou-Hui et al. (2018) Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ 25:1671-1685
Kim, Jeewon; Chen, Che-Hong; Yang, Jieying et al. (2017) Aldehyde dehydrogenase 2*2 knock-in mice show increased reactive oxygen species production in response to cisplatin treatment. J Biomed Sci 24:33
Qvit, Nir; Kornfeld, Opher S; Mochly-Rosen, Daria (2017) Corrigendum: Engineered Substrate-Specific Delta PKC Antagonists to Enhance Cardiac Therapeutics. Angew Chem Int Ed Engl 56:2236
Campos, Juliane C; Queliconi, Bruno B; Bozi, Luiz H M et al. (2017) Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 13:1304-1317
Chang, Jeffrey S; Hsiao, Jenn-Ren; Chen, Che-Hong (2017) ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective. J Biomed Sci 24:19
Ueta, Cintia B; Gomes, Katia S; Ribeiro, Márcio A et al. (2017) Disruption of mitochondrial quality control in peripheral artery disease: New therapeutic opportunities. Pharmacol Res 115:96-106
Qvit, Nir; Rubin, Samuel J S; Urban, Travis J et al. (2017) Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22:454-462
Nene, Aishwarya; Chen, Che-Hong; Disatnik, Marie-Hélène et al. (2017) Aldehyde dehydrogenase 2 activation and coevolution of its ?PKC-mediated phosphorylation sites. J Biomed Sci 24:3
Cunningham, Anna D; Qvit, Nir; Mochly-Rosen, Daria (2017) Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol 44:59-66
Qvit, Nir; Joshi, Amit U; Cunningham, Anna D et al. (2016) Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem 291:13608-21

Showing the most recent 10 out of 69 publications