The goal of this proposal is to delineate the relationship between the FAA and FAC gene products and the DNA repair defect in Fanconi anemia, complementation groups A (FA-A) and C (FA-C). It has been hypothesized that an underlying mechanism for this disorder may involve a DNA repair defect. We have isolated a DNA endonuclease complex from the nuclei of FA-A and FA-C cells and shown that it is defective in ability to incise DNA at sites of interstrand cross- links. Levels of a 230 kDa protein, associated with this complex and which binds to cross-linked DNA, are decreased in FA-A and FA-C cells. This protein has recently been identified as nonerythroid alpha spectrinllsigma* (alphaSpIIsigma*). The deficiency in alphaSpIIsigma* is corrected in FA-A cells transduced with a retroviral vector expressing the FAA cDNA, indicating that the FAA gene plays a role in its expression or stability. alphaSpIIsigma* also forms a complex with the FAA and FAC proteins in the nucleus which suggests that this complex may play role in DNA repair. It is possible that alphaSpllsigma* acts as a scaffold to help align or enhance interaction between proteins involved in the repair of interstrand cross-links and proteins that interact with FAA and FAC. The present proposal will address this by first determining the isoform of the alphaSpllsigma* we have identified and producing a recombinant protein that can be used in further studies. Exactly what proteins are associated with the FAA-FAC-alphaSpllsigma* complex, whether any of these proteins have binding affinity for DNA containing interstrand cross-links, and whether there is a deficiency in any of these proteins in FA-A and FA-C cells will be determined. The role of the FAA and FAC proteins in regulating the expression or stability of alphaSpllsigma* will be assessed as will the role of each of these three proteins in the repair of DNA interstrand cross-links. If alphaSpllsigma* is acting as a scaffolding protein, to help align and allow interactions between these as well as other proteins, this could have far reaching implications in a number of different processes, in addition to DNA repair, which have been associated with this protein, such as signal transduction and cell growth and development. A deficiency in alphaSpllsigma* in FA cells could thus ultimately affect hematopoietic differentiation and development. Isolation and identification of proteins associated with the FAA-FAC- alphaSpllsigma* complex and determination of their interactions with each other, other nuclear proteins, and DNA repair should help elucidate the basis of bone marrow failure and the development of aplastic anemia and leukemia in FA.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL054860-07
Application #
6389513
Study Section
Hematology Subcommittee 2 (HEM)
Program Officer
Peterson, Charles M
Project Start
1995-07-01
Project End
2003-05-31
Budget Start
2001-06-01
Budget End
2002-05-31
Support Year
7
Fiscal Year
2001
Total Cost
$362,355
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Pathology
Type
Schools of Medicine
DUNS #
605799469
City
Newark
State
NJ
Country
United States
Zip Code
07107
Lambert, Muriel W (2018) Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 243:507-524
Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W (2016) Nuclear ? Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage. J Cell Biochem 117:671-83
Lambert, Muriel W (2016) Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 241:1621-38
Lambert, Muriel W (2015) Functional Significance of Nuclear ? Spectrin. J Cell Biochem 116:1816-30
Zhang, Pan; Herbig, Utz; Coffman, Frederick et al. (2013) Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage. Nucleic Acids Res 41:5321-40
Wang, Chuan; Lambert, Muriel W (2010) The Fanconi anemia protein, FANCG, binds to the ERCC1-XPF endonuclease via its tetratricopeptide repeats and the central domain of ERCC1. Biochemistry 49:5560-9
Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W (2010) Knockdown of mu-calpain in Fanconi anemia, FA-A, cells by siRNA restores alphaII spectrin levels and corrects chromosomal instability and defective DNA interstrand cross-link repair. Biochemistry 49:5570-81
McMahon, Laura W; Zhang, Pan; Sridharan, Deepa M et al. (2009) Knockdown of alphaII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem Biophys Res Commun 381:288-93
Lefferts, Joel A; Wang, Chuan; Sridharan, Deepa et al. (2009) The SH3 domain of alphaII spectrin is a target for the Fanconi anemia protein, FANCG. Biochemistry 48:254-63
Kumaresan, Kandallu R; Sridharan, Deepa M; McMahon, Laura W et al. (2007) Deficiency in incisions produced by XPF at the site of a DNA interstrand cross-link in Fanconi anemia cells. Biochemistry 46:14359-68

Showing the most recent 10 out of 13 publications