While the molecular mechanisms for the regulation of vascular tone by nitric oxide are well appreciated, the targets of nitric oxide (NO) signaling at the proteome level are incomplete. Decline in synthesis and bioavailability of NO is central to the pathogenesis of cardiovascular diseases and in age-dependent deterioration of vascular function and cardiac muscle performance. However, the signaling pathways affected by the decline in bioavailable NO during ageing remain unclear. Furthermore, several current clinical trials aim to restore the levels of NO in humans with hopes to improve cardiovascular and skeletal muscle physiological function and prevent vascular disease and disability in aged populations. Presently, the signaling pathways reestablished by pharmacological restoration of NO remain unknown. Therefore, we propose to use chemoselective, high- resolution, mass spectrometry-based proteomic technologies to identify and quantify for the first time at the organ and cellular level the two post-translational modifications protein phosphorylation and cysteine S-nitrosation, that constitute the two principle NO signaling pathways. We will resolve changes in the canonical signaling cascade, activation of soluble guanylate cyclase, production of cGMP and Ser/Thr phosphorylation of proteins and the complimentary selective S-nitrosylation of cysteine residues as a function of gender, ageing and in the setting of NO deficiency before and after restoration of bioavailable NO. Guided by preliminary data we will also investigate a novel mechanism for the regulation of the NAD-dependent protein deacetylase sirtuin 2 by NO. This regulatory function may have important cardioprotective functions. Completion of the proposed aims will provide new mechanistic insights and a framework for system-level appreciation of NO signalling in the cardiovascular system.

Public Health Relevance

Despite the importance of nitric oxide in cardiovascular physiology and disease, the molecular signaling pathways affected by nitric oxide remain incomplete. Consequently, this application will comprehensively resolve, quantify and define alterations in nitric oxide signaling at the proteome level. The data will provide a new foundation of knowledge and a framework for system-level appreciation of this essential signalling molecule in the cardiovascular system.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL054926-22
Application #
10064019
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Chen, Jue
Project Start
1997-09-05
Project End
2023-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
22
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19146
Frawley, Elaine R; Karlinsey, Joyce E; Singhal, Anshika et al. (2018) Nitric Oxide Disrupts Zinc Homeostasis in Salmonella enterica Serovar Typhimurium. MBio 9:
Doulias, Paschalis-Thomas; Gould, Neal S (2018) Analysis of Cysteine Post Translational Modifications Using Organic Mercury Resin. Curr Protoc Protein Sci 94:e69
Tenopoulou, Margarita; Doulias, Paschalis-Thomas; Nakamoto, Kent et al. (2018) Oral nitrite restores age-dependent phenotypes in eNOS-null mice. JCI Insight 3:
Guan, Dongyin; Xiong, Ying; Borck, Patricia C et al. (2018) Diet-Induced Circadian Enhancer Remodeling Synchronizes Opposing Hepatic Lipid Metabolic Processes. Cell 174:831-842.e12
Zamani, Payman; Tan, Victor; Soto-Calderon, Haideliza et al. (2017) Pharmacokinetics and Pharmacodynamics of Inorganic Nitrate in Heart Failure With Preserved Ejection Fraction. Circ Res 120:1151-1161
Zamani, Payman; French, Benjamin; Brandimarto, Jeffrey A et al. (2016) Effect of Heart Failure With Preserved Ejection Fraction on Nitric Oxide Metabolites. Am J Cardiol 118:1855-1860
Christian, Abigail J; Alferiev, Ivan S; Connolly, Jeanne M et al. (2015) The effects of the covalent attachment of 3-(4-hydroxy-3,5-di-tert-butylphenyl) propyl amine to glutaraldehyde pretreated bovine pericardium on structural degeneration, oxidative modification, and calcification of rat subdermal implants. J Biomed Mater Res A 103:2441-8
Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi et al. (2015) Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 131:371-80; discussion 380
Raju, Karthik; Doulias, Paschalis-Thomas; Evans, Perry et al. (2015) Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal 8:ra68
Irie, Tomoya; Sips, Patrick Y; Kai, Shinichi et al. (2015) S-Nitrosylation of Calcium-Handling Proteins in Cardiac Adrenergic Signaling and Hypertrophy. Circ Res 117:793-803

Showing the most recent 10 out of 51 publications