Cardiocyte apoptosis has been identified in many clinically important cardiac conditions including heart failure and ischemia-reperfusion injury. Insulin-like growth factor-1 (IGF-I) blocks apoptosis in many systems, and has beneficial effects on both cardiocyte function and survival. IGF-I administration reduces cardiocyte apoptosis after ischemia-reperfusion in animal models. However, the intracellular mechanisms controlling cardiocyte cell death and the benefits of IGF-I remain largely unexplored. The goal of this proposal is to understand the role of specific IGF-I receptor-mediated signaling pathways in blocking cardiocyte apoptosis. Binding of IGF-I to the IGF-I receptor (IGF-IR) initiates signaling through two distinct pathways: 1) phosphorylation of insulin receptor substrate (IRS)-I with activation of phosphatidylinositol (PI) 3-kinase and 2) the Ras/MAP (mitogen-activated protein) kinase pathway. In other systems, activation of PI 3-kinase is critical to the ability of IGF-I to block apoptosis, while MAP kinase activation has been associated with cardiac hypertrophy and malignant transformation. This proposal is based on three hypotheses: 1) that IGF-IR-induced activation of PI 3-kinase mediates the beneficial effects of IGF-I on cardiocyte survival, 2) that the benefit of IGF-I in ischemia-reperfusion is mediated by inhibition of caspase-dependent apoptosis, and 3) that apoptosis contributes significantly to the regional cardiac dysfunction seen after ischemia-reperfusion. To test these hypotheses, mutants of the IGF-IR (mIGF-IR) that constitutively and selectively activate PI 3-kinase will be utilized. Adenoviral gene transfer will overexpress mIGF-IR, the wild-type IGF-IR (wtIGF-IR), and crmA (a potent inhibitor of caspase-mediated apoptosis) in cardiomyocytes in in vivo and in vitro models.
Specific Aim 1 will develop and characterize wild-type and a series wild-IGF-receptor mutants in adenoviral vectors , as well as vectors encoding crmA, a specific caspase inhibitor.
Specific Aim 2 will examine the effects of wtIGF-IR, mIGF-IR, and crmA overexpression on cardiocyte apoptosis in vitro.
Specific Aim 3 will study the effects of mIGF-IR and crmA overexpression on cardiac apoptosis and function in a model of ischemia-reperfusion injury. Understanding the role of specific signaling pathways in cardiocyte apoptosis and developing approaches to local modulation of these pathways through somatic gene transfer, may provide novel therapeutic approaches for the management of many clinically important disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL059521-02
Application #
2872976
Study Section
Pathology A Study Section (PTHA)
Project Start
1998-02-01
Project End
2002-01-31
Budget Start
1999-02-01
Budget End
2000-01-31
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Dai, Jing; Matsui, Takashi; Abel, E Dale et al. (2014) Deep sequence analysis of gene expression identifies osteopontin as a downstream effector of integrin-linked kinase (ILK) in cardiac-specific ILK knockout mice. Circ Heart Fail 7:184-93
Bezzerides, Vassilios; Rosenzweig, Anthony (2011) Saying yes to exercise and NO to cardiac injury. Circ Res 108:1414-6
Kusakari, Yoichiro; Xiao, Chun-Yang; Himes, Nathan et al. (2009) Myocyte injury along myofibers in left ventricular remodeling after myocardial infarction. Interact Cardiovasc Thorac Surg 9:951-5
Sosnovik, David E; Nahrendorf, Matthias; Panizzi, Peter et al. (2009) Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2:468-75
Matsui, Takashi; Nagoshi, Tomohisa; Hong, Eun-Gyoung et al. (2006) Effects of chronic Akt activation on glucose uptake in the heart. Am J Physiol Endocrinol Metab 290:E789-97
Morissette, Michael R; Cook, Stuart A; Foo, ShiYin et al. (2006) Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ Res 99:15-24
Matsui, Takashi; Rosenzweig, Anthony (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63-71
Chao, Wei; Shen, Yan; Li, Ling et al. (2005) Fas-associated death-domain protein inhibits TNF-alpha mediated NF-kappaB activation in cardiomyocytes. Am J Physiol Heart Circ Physiol 289:H2073-80
Aoyama, Takuma; Matsui, Takashi; Novikov, Mikhail et al. (2005) Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111:1652-9
Nagoshi, Tomohisa; Matsui, Takashi; Aoyama, Takuma et al. (2005) PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest 115:2128-38

Showing the most recent 10 out of 32 publications