Low density lipoprotein receptor-related protein-1 (LRP-1) is a transmembrane receptor that mediates the endocytosis of over forty distinct ligands and other plasma membrane proteins. LRP-1 also regulates cell-signaling by two distinct mechanisms. Ligands that bind directly to LRP-1, including tissue-type plasminogen activator, activated 12-macroglobulin, and matrix metalloprotease-9, activate cell-signaling pathways leading to factors such as ERK/MAP kinase, Akt and possibly Src family kinases and NF-kB. LRP-1 also regulates cell- signaling indirectly by controlling cell-surface levels of other receptors, including the urokinase receptor (uPAR) and tumor necrosis factor receptor-1 (TNFR1). Recent studies from this and other laboratories have provided novel mechanistic links between LRP-1-initiated cell-signaling and inflammation, cell survival, and atherosclerosis. The major goal of this research proposal is to elucidate the function of LRP-1 in cell-signaling and to understand how LRP-1 regulates inflammation in vivo. Preliminary results support our major hypothesis that LRP-1 suppresses inflammation by its effects on cell-signaling as both a transmembrane and shed/soluble receptor.
Three aims are proposed.
These aims are presented in a systematic manner to show how our planned research moves from discovery (Aim 1) to assessment of molecular mechanism (Aim 2) and finally to in vivo model systems (Aim 3).
In Aim 1, we will apply our novel ectodomain shaving protocols, the recently described PROTOMAP platform, and available LC-MS technology to assess the ability of LRP-1 to regulate the plasma membrane proteome. Pilot studies applying our proposed methodology have already revealed novel plasma membrane proteins that may be regulated by LRP-1 and that may contribute to the effects of LRP-1 on cell physiology.
In Aim 2, studies are proposed to characterize how LRP-1 indirectly regulates cell-signaling downstream of TNFR1 and uPAR. We also will work to develop a model regarding how the cell integrates simultaneous signals received directly from LRP-1, due to ligand-binding, and from receptors that are indirectly regulated by LRP-1. We hypothesize that the predominant pathway will reflect the availability of ligands for LRP-1 and for the indirectly regulated receptors in the cellular microenvironment. Finally, in Aim 3, we will test the hypothesis that LRP-1 is anti-inflammatory in vivo due to its ability to regulate cell-surface TNFR1. Lipo- polysaccharide challenge experiments will be conducted in mice in which LRP-1 is conditionally deleted in macrophages and in control mice in the equivalent genetic background. Additional experiments are planned to test the activity of shed LRP-1 as an anti-inflammatory agent in vivo. Overall, these studies have the potential to further our understanding of diverse forms of pathophysiology in which inflammation plays a role, including thrombosis and atherogenesis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Kindzelski, Andrei L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Campana, Wendy M; Mantuano, Elisabetta; Azmoon, Pardis et al. (2017) Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. FASEB J 31:1744-1755
Fl├╝tsch, Andreas; Henry, Kenneth; Mantuano, Elisabetta et al. (2016) Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport 27:1305-1311
Mantuano, Elisabetta; Brifault, Coralie; Lam, Michael S et al. (2016) LDL receptor-related protein-1 regulates NF?B and microRNA-155 in macrophages to control the inflammatory response. Proc Natl Acad Sci U S A 113:1369-74
Laudati, Emilia; Gilder, Andrew S; Lam, Michael S et al. (2016) The activities of LDL Receptor-related Protein-1 (LRP1) compartmentalize into distinct plasma membrane microdomains. Mol Cell Neurosci 76:42-51
Mantuano, Elisabetta; Lam, Michael S; Shibayama, Masataka et al. (2015) The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration. J Cell Sci 128:3478-88
Gonias, Steven L; Campana, W Marie (2014) LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184:18-27
Mantuano, Elisabetta; Lam, Michael S; Gonias, Steven L (2013) LRP1 assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator and myelin-associated glycoprotein. J Biol Chem 288:34009-18
Staudt, Nicole D; Jo, Minji; Hu, Jingjing et al. (2013) Myeloid cell receptor LRP1/CD91 regulates monocyte recruitment and angiogenesis in tumors. Cancer Res 73:3902-12
Stiles, Travis L; Dickendesher, Travis L; Gaultier, Alban et al. (2013) LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. J Cell Sci 126:209-20
Fernandez-Castaneda, Anthony; Arandjelovic, Sanja; Stiles, Travis L et al. (2013) Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem 288:4538-48

Showing the most recent 10 out of 36 publications