Primary pulmonary hypertension (PPH) is a fatal disease of unclear etiology, characterized by progressive increase in pulmonary artery pressure. The long term goal of this research is to determine the role of NO, oxidants and NO-oxidant chemical reaction products in pulmonary hypertension. Our preliminary data provide clear evidence that NO and NO reaction products (N03, S-nitrosothiols) are lower in lungs of PPH than healthy controls. We propose that the low levels of NO and its reaction products in PPH are due to decreased NO synthesis and increased NO consumption by reactions with oxidant species, leading to alternative reaction endproducts. We show that NO reaction products are strongly correlated in an inverse relationship to pulmonary artery pressures in PPH. Theoretical modeling and simulation of our data suggest that progression and mortality in PPH will be predicted by NO reaction products. These data indicate a possible role for NO and oxidants in the pathogenesis of PPH. We will test our hypotheses with 4 aims. First, we will extend our preliminary findings and obtain longitudinal data on pulmonary artery pressures, cardiac output and lung diffusion capacity in 30 PPH patients. The values of these factors at specific time points will be modeled as linear functions of the corresponding levels of NO and NO reaction products to test our hypothesis that NO reaction products are predictive of progression of PPH. Second, low NO levels in PPH may result from decreased nitric oxide synthase (NOS) levels or activity. NOS expression for all 3 isoforms will be quantitated and localized in PPH lungs in comparison to controls. NOS activity will be measured and posttranslational mechanisms regulating activity evaluated. Third, low NO in PPH may also result from increased consumption. We propose that oxidative consumption of NO is increased in PPH due to alterations in the reducing-oxidizing (redox) environment of the lung. Since oxidative status of the lung cannot be assessed directly, we will test this hypothesis by measures of (i) nitrotyrosine formation; (ii) Nuclear Factor kappaB, a transcription factor activated in inflammation through oxidant mechanisms; and (iii) antioxidant levels. Finally, the concept that NO consumption through NO-oxidant reactions is dependent upon the redox environment will be tested in an in vitro cell culture system. Together, these experiments will define the mechanisms regulating NO levels and reactions in the lung, and provide a comprehensive picture regarding the role of NO and NO reaction products in PPH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL060917-04
Application #
6537448
Study Section
Lung Biology and Pathology Study Section (LBPA)
Program Officer
Gail, Dorothy
Project Start
1999-04-01
Project End
2004-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
4
Fiscal Year
2002
Total Cost
$226,709
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
017730458
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Allawzi, Ayed M; Vang, Alexander; Clements, Richard T et al. (2018) Activation of Anoctamin-1 Limits Pulmonary Endothelial Cell Proliferation via p38-Mitogen-activated Protein Kinase-Dependent Apoptosis. Am J Respir Cell Mol Biol 58:658-667
Janocha, Allison J; Comhair, Suzy A A; Basnyat, Buddha et al. (2017) Antioxidant defense and oxidative damage vary widely among high-altitude residents. Am J Hum Biol 29:
Asosingh, Kewal; Wanner, Nicholas; Weiss, Kelly et al. (2017) Bone marrow transplantation prevents right ventricle disease in the caveolin-1-deficient mouse model of pulmonary hypertension. Blood Adv 1:526-534
Hwangbo, Cheol; Lee, Heon-Woo; Kang, Hyeseon et al. (2017) Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension. Circulation 135:2288-2298
Cheong, Hoi I; Asosingh, Kewal; Stephens, Olivia R et al. (2016) Hypoxia sensing through ?-adrenergic receptors. JCI Insight 1:e90240
Yuan, Yiyuan; Hakimi, Parvin; Kao, Clara et al. (2016) Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. J Biol Chem 291:1307-19
Farha, Samar; Hu, Bo; Comhair, Suzy et al. (2016) Mitochondrial Haplogroups and Risk of Pulmonary Arterial Hypertension. PLoS One 11:e0156042
Rose, Jonathan A; Wanner, Nicholas; Cheong, Hoi I et al. (2016) Flow Cytometric Quantification of Peripheral Blood Cell ?-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension. PLoS One 11:e0156940
Federici, Chiara; Drake, Kylie M; Rigelsky, Christina M et al. (2015) Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 192:219-28
Chen, Tianji; Zhou, Guofei; Zhou, Qiyuan et al. (2015) Loss of microRNA-17?92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 191:678-92

Showing the most recent 10 out of 84 publications