We propose to investigate the mechanisms of force transmission in skeletal muscles. In particular, we will investigate the contribution of desmin and dystrophin, intracellular components of the membrane cytoskeleton, the membrane receptor alpha-7-integrin, and the extracellular molecular merosin to force transmission in diaphragm muscle. Desmin deficiency leads to desminopathy, a rare disease. Deficiencies of dystrophin, merosin, or alpha-7-integrin lead to various form of muscular dystrophy, which are more common diseases. Lack of any of these proteins causes skeletal muscle degeneration, chronic inspiratory muscle weakness, and ultimately respiratory insufficiency that leads to respiratory failure and eventually death. The diaphragm, unlike most other skeletal muscles, is loaded biaxially in vivo. That is the diaphragm experiences loads along muscle fibers and transverse to fibers during contractile activity. This application is an initial first step towards understanding the mechanical behavior of diaphragm muscle at the cellular level. Our central hypothesis is that force transmission in the diaphragm is modulated by transverse fiber loading and mediated by the linkage of specific intra- and extracellular members of the transmembrane protein network. This hypothesis will be tested by studying spontaneous and engineered mutant mouse strains; using strains missing key elements of the transmembrane protein network, we will test the response of the biaxial mechanical properties of the diaphragm and hindlimb muscles to the absence of these proteins. The long term goals of this research program are to understand muscle force transmission in skeletal muscles at the protein level and build a detailed model of mechanical coupling in normal skeletal muscles that explains the mechanism(s) by which force is transmitted from cytoskeleton to extracellular matrix.
The specific aims of this project are to determine passive mechanical properties of the mouse diaphragm and their influence on contractile function and to evaluate the role of intracellular, transmembrane, and extracellular elements on the biaxial transmission of force in the diaphragm. Using a electron microscopy and biaxial loading technique applied to whole diaphragm and limb skeletal muscles in vitro, we will test the following hypotheses at both tissue and sarcomere levels: (1) transverse stress mediates force transmission in the normal diaphragm at both tissue and at sarcomere levels, and both passive and contractile properties of the diaphragm are altered by the presence of transverse stress; (2) intracellular members of the transmembrane protein network, desmin and dystrophin, are essential in integrating transverse and longitudinal mechanical properties of the diaphragm, and the strength of the mechanical linkage between myofibrils and the plasma membrane is determined primarily by these proteins; and (3) the mechanical coupling between myofibrils and extracellular matrix is crucial to force transmission along and transverse to the fibers in normal skeletal muscles, and force transmission is compromised by loss of either alpha-7-integrin or merosin.
These aims address the mechanism(s) by which force transmission is mediated by specific cytoskeletal and extracellular proteins in skeletal muscles.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL063134-03
Application #
6637508
Study Section
Special Emphasis Panel (ZRG1-ALTX-1 (02))
Program Officer
Croxton, Thomas
Project Start
2001-03-01
Project End
2005-02-28
Budget Start
2003-03-01
Budget End
2004-02-29
Support Year
3
Fiscal Year
2003
Total Cost
$338,595
Indirect Cost
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Mohamed, Junaith S; Hajira, Ameena; Lopez, Michael A et al. (2015) Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy. J Biol Chem 290:24986-5011
Pardo, Patricia S; Mohamed, Junaith S; Lopez, Michael A et al. (2011) Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem 286:2559-66
Greybeck, Brad J; Wettergreen, Matthew; Hubmayr, Rolf D et al. (2011) Diaphragm curvature modulates the relationship between muscle shortening and volume displacement. Am J Physiol Regul Integr Comp Physiol 301:R76-82
Mohamed, Junaith S; Lopez, Michael A; Boriek, Aladin M (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3?. J Biol Chem 285:29336-47
Mohamed, Junaith Shaik; Boriek, Aladin M (2010) Stretch augments TGF-beta1 expression through RhoA/ROCK1/2, PTK, and PI3K in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 299:L413-24
Chu, Iris; Fernandez, Cristina; Rodowicz, Kathleen Allen et al. (2010) Diaphragm muscle shortening modulates kinematics of lower rib cage in dogs. Am J Physiol Regul Integr Comp Physiol 299:R1456-62
Mohamed, Junaith S; Lopez, Michael A; Cox, Gregory A et al. (2010) Anisotropic regulation of Ankrd2 gene expression in skeletal muscle by mechanical stretch. FASEB J 24:3330-40
Lopez, Michael A; Pardo, Patricia S; Cox, Gregory A et al. (2008) Early mechanical dysfunction of the diaphragm in the muscular dystrophy with myositis (Ttnmdm) model. Am J Physiol Cell Physiol 295:C1092-102
Pardo, Patricia S; Lopez, Michael A; Boriek, Aladin M (2008) FOXO transcription factors are mechanosensitive and their regulation is altered with aging in the respiratory pump. Am J Physiol Cell Physiol 294:C1056-66
Cheng, Jizhong; Zhang, Jiqiang; Merched, Aksam et al. (2007) Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1. J Biol Chem 282:34268-75

Showing the most recent 10 out of 22 publications