In cardiac excitation-contraction coupling, the sarcoplasmic reticulum (SR) plays an essential role in the regulation of the cytosolic free Ca2+ concentration. There are three major functions of the SR: a) Ca2+-uptake from the cytosol into the SR lumen resulting in muscle relaxation; b) Ca2+ storage in the SR lumen; and c) Ca2+-release from the SR into the cytosol resulting in muscle contraction. The main SR proteins responsible for these functions are: the Ca2+-transport ATPase (SERCA), the Ca2+ storage protein calsequestrin, and the Ca2+ release channel or ryanodine receptor, respectively. Phospholamban is another SR protein, which plays a crucial role in the regulation of the Ca2+-ATPase activity and myocardial contractility. In this project, we propose further studies on elucidating the regulatory role of PLB in the mammalian heart and defining the stoichiometric coupling ratio between PLB and the Ca2+-pump, which appears to be a key determinant of cardiac contractile parameters. We also propose to elucidate the role of the PLB phosphorylation status, through regulation of its phosphatase activity by inhibitor 1, in the control of contractility under basal and beta-agonist conditions. Furthermore, since alterations in the levels of PLB or in the degree of PLB phosphorylation reflect alterations in SR Ca2+ load and contractility, we propose to elucidate the functional role of SR Ca2+ load through calsequestrin, the major Ca2+ storage protein in the SR lumen. Animal models with alterations in the expression levels of this protein (overexpression and knockouts) will be generated and their cardiac phenotype will be analyzed at the subcellular, cellular, organ and intact animal levels. These studies will provide important information on the physiological role of calsequestrin in vivo. Overall, our proposed studies will advance our knowledge on the mechanisms underlying regulation of Ca2+ homeostasis by the SR function. They will also provide valuable insights into the crosstalk between the various SR Ca2+ handling proteins and their regulatory effects on cardiac contractility.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL064018-01
Application #
6039092
Study Section
Cardiovascular and Pulmonary Research A Study Section (CVA)
Project Start
2000-02-01
Project End
2005-01-31
Budget Start
2000-02-01
Budget End
2001-01-31
Support Year
1
Fiscal Year
2000
Total Cost
$340,554
Indirect Cost
Name
University of Cincinnati
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Liu, Guan-Sheng; Gardner, George; Adly, George et al. (2018) A novel human S10F-Hsp20 mutation induces lethal peripartum cardiomyopathy. J Cell Mol Med :
Bidwell, Philip A; Haghighi, Kobra; Kranias, Evangelia G (2018) The antiapoptotic protein HAX-1 mediates half of phospholamban's inhibitory activity on calcium cycling and contractility in the heart. J Biol Chem 293:359-367
Liu, Guan-Sheng; Zhu, Hongyan; Cai, Wen-Feng et al. (2018) Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6S10F mutant. Autophagy 14:80-97
Bidwell, Philip A; Liu, Guan-Sheng; Nagarajan, Narayani et al. (2018) HAX-1 regulates SERCA2a oxidation and degradation. J Mol Cell Cardiol 114:220-233
Pollak, Adam J; Haghighi, Kobra; Kunduri, Swati et al. (2017) Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc Natl Acad Sci U S A 114:9098-9103
Kranias, Evangelia G; Hajjar, Roger J (2017) The Phospholamban Journey 4 Decades After Setting Out for Ithaka. Circ Res 120:781-783
Watanabe, Shin; Ishikawa, Kiyotake; Fish, Kenneth et al. (2017) Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure. J Am Coll Cardiol 70:1744-1756
Mazzocchi, G; Sommese, L; Palomeque, J et al. (2016) Phospholamban ablation rescues the enhanced propensity to arrhythmias of mice with CaMKII-constitutive phosphorylation of RyR2 at site S2814. J Physiol 594:3005-30
Stillitano, Francesca; Turnbull, Irene C; Karakikes, Ioannis et al. (2016) Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J 37:3282-3284
Bidwell, Philip A; Kranias, Evangelia G (2016) Calcium Uptake in Crude Tissue Preparation. Methods Mol Biol 1377:161-70

Showing the most recent 10 out of 119 publications