: Our preliminary data show that opioid drugs, administered to sickle patients promote growth of microvascular endothelial cells. This opioid effect on endothelium is accompanied by MAPK/ERK activation and promotion of in vitro (tube formation) and in vivo (in Matrigel implants in mice) angiogenesis. We hypothesize that administration of opioids to sickle patients may increase their risk for retinopathy by pro-angiogenic signaling of opioids in endothelium. We will test this via 4 Specific Aims.
I Aim#1 Characterize opioid induced endothelial proliferation, by testing specific hypotheses that endothelial growth response to opioids is, [a] exaggerated for human dermal microvascular endothelial cells (HDMEC) and retinal EC vs. HUVEC, [b] influenced by pro-inflammatory cytokines and VEOF, [c] accompanied by EC activation, cell adhesion molecule and NOS expression, Ed] caused by both a stimulation of growth and inhibition of apoptosis.
Aim#2 Identify mechanism of endothelial growth stimulation by opioids via 4 specific hypotheses, that [a] opioid stimulated growth involves specific opioid receptors in both presence and absence of pro-inflammatory cytokines, [b] pro-inflammatory cytokines and growth factors regulate mu opioid receptor (MOR) expression on human microvascular EC, [c] opioid signaling in endothelium involves MAPK/ERK phosphorylation via Gi coupled receptors and NO, Ed] opioid induced proliferation is I dependent upon above signaling pathway.
Aim#3 Determine if pro-inflammatory cytokine induced MOR. expression and opioid-induced endothelial growth actually promotes angiogenesis in vitro (tube formation in Matrigel) and in vivo (in Matrigel implants in mice).
Aim #4 Use sickle mice to determine if opioids exert biologically important effects in vivo, by testing specific hypotheses that administration of opioids to sickle mice [a) causes increased endothelial activation and cell adhesion molecule and NOS expression, [b] accelerates and/or exaggerates development of retinopathy, [c] improves rate of healing of skin wounds; (longer-term goal). Mostly HDMEC and some retinal microvascular EC will be used, since it is critical for angiogenesis studies to use microvascular not large vessel EC. If our hypotheses are true, this Project may lead to several implications of opioid signaling, resulting in altered, clinical decision making and perhaps even to development of novel therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL068802-03
Application #
6731106
Study Section
Experimental Cardiovascular Sciences Study Section (ECS)
Program Officer
Evans, Gregory
Project Start
2002-04-01
Project End
2006-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
3
Fiscal Year
2004
Total Cost
$222,750
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Wang, Ying; Gupta, Mihir; Poonawala, Tasneem et al. (2017) Opioids and opioid receptors orchestrate wound repair. Transl Res 185:13-23
Mittal, Aditya; Gupta, Mihir; Lamarre, Yann et al. (2016) Quantification of pain in sickle mice using facial expressions and body measurements. Blood Cells Mol Dis 57:58-66
Vincent, Lucile; Vang, Derek; Nguyen, Julia et al. (2016) Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation. Haematologica 101:566-77
Vang, Derek; Paul, Jinny A; Nguyen, Julia et al. (2015) Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice. Haematologica 100:1517-25
Gupta, Mihir; Poonawala, Tasneem; Farooqui, Mariya et al. (2015) Topical fentanyl stimulates healing of ischemic wounds in diabetic rats. J Diabetes 7:573-583
Gupta, Mihir; Msambichaka, Lilian; Ballas, Samir K et al. (2015) Morphine for the treatment of pain in sickle cell disease. ScientificWorldJournal 2015:540154
Nguyen, J; Luk, K; Vang, D et al. (2014) Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. Br J Anaesth 113 Suppl 1:i4-13
Zylla, D; Kuskowski, M A; Gupta, K et al. (2014) Association of opioid requirement and cancer pain with survival in advanced non-small cell lung cancer. Br J Anaesth 113:i109-i116
Dandapat, Abhijit; Bosnakovski, Darko; Hartweck, Lynn M et al. (2014) Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep 8:1484-96
Zylla, Dylan; Gourley, Brett L; Vang, Derek et al. (2013) Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer. Cancer 119:4103-10

Showing the most recent 10 out of 27 publications