: Extracellular superoxide dismutase (ecSOD), a major form of SOD expressed in the vasculature, is a """"""""secretory"""""""" copper-containing enzyme and plays an important role in regulating blood pressure and endothelial function by modulating the levels of O2 in the extracellular space. Particularly, in angiotensin H-induced hypertension model, the excessive 02 is observed in the vessel wall and the hypertension is ameliorated by treatment with membrane-targeted forms of SOD. Moreover, we have found that blood pressure and 02 production in the vessel were highly elevated in ecSOD-deficient mice infused with angiotensin II. Thus, ecS0D is a potentially important modulator of oxidative phenomena in the pathogenesis of hypertension. Recently, it has been shown that copper chaperones (CCS) are critical for copper transport and delivery to copper containing enzymes. Our preliminary data strongly suggests that CCS with signal peptide (CCS-SP) which targets to Golgi plays an important role in the transport of copper to ecSOD, which is required for full activity of the ecSOD. We will propose the following specific aim to address how ecSOD activity is controlled by copper transport system such as CCS and copper transporter in the yeast system, vascular cells and in vivo model of hypertension.
In aim 1, we will characterize a role of copper transport system for full expression of ecSOD activity using the yeast system. First, by generating several CCS-SP cDNA constructs including the truncated form, we will determine which region is critical for copper loading-to ecSOD. Second, we will determine if copper loading to ecSOD requires MNK, a copper transporter in the trans-Golgi network, using the yeast strain deficient in MNK.
In aim 2, we will identify endogenous copper chaperone for ecSOD in human aortic smooth muscle cells (HASM) that highly expresses ecSOD, by using the highly conserved region of CCS as a probe that have detected novel CCS-like transcript and protein in HASM. Next, we will determine if copper delivery to ecSOD requires MTNK in mammalian cells, by using the murine MNK-mutant fibroblast and aorta from MNK-mutant mice.
In aim 3, we will examine the role of copper transport system for ecSOD in blood pressure, vascular O2 production and endothelial function in angiotensin II induced hypertension by using MNK-mutant mice. These studies will provide new insight into a copper transport system for ecSOD as a novel modulator of oxidative stress linked to the pathogenesis of hypertension and as essential to anti-oxidant therapy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL070187-03
Application #
6721148
Study Section
Experimental Cardiovascular Sciences Study Section (ECS)
Program Officer
Goldman, Stephen
Project Start
2002-04-01
Project End
2007-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
3
Fiscal Year
2004
Total Cost
$266,000
Indirect Cost
Name
Emory University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Sudhahar, Varadarajan; Okur, Mustafa Nazir; Bagi, Zsolt et al. (2018) Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 38:529-541
Fang, Milie M; Barman, Pijus K; Thiruppathi, Muthusamy et al. (2018) Oxidant Signaling Mediated by Nox2 in Neutrophils Promotes Regenerative Myelopoiesis and Tissue Recovery following Ischemic Damage. J Immunol 201:2414-2426
Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan et al. (2017) Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. Am J Physiol Heart Circ Physiol 312:H896-H906
Das, Archita; Sudhahar, Varadarajan; Chen, Gin-Fu et al. (2016) Endothelial Antioxidant-1: a Key Mediator of Copper-dependent Wound Healing in vivo. Sci Rep 6:33783
Nakashima, Tadaaki; Umemoto, Seiji; Yoshimura, Koichi et al. (2015) TLR4 is a critical regulator of angiotensin II-induced vascular remodeling: the roles of extracellular SOD and NADPH oxidase. Hypertens Res 38:649-55
Matsuda, Susumu; Umemoto, Seiji; Yoshimura, Koichi et al. (2015) Angiotensin ? Activates MCP-1 and Induces Cardiac Hypertrophy and Dysfunction via Toll-like Receptor 4. J Atheroscler Thromb 22:833-44
Chen, Gin-Fu; Sudhahar, Varadarajan; Youn, Seock-Won et al. (2015) Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Sci Rep 5:14780
Mao, Mao; Varadarajan, Sudhahar; Fukai, Tohru et al. (2014) Nitroglycerin tolerance in caveolin-1 deficient mice. PLoS One 9:e104101
Kohno, Takashi; Urao, Norifumi; Ashino, Takashi et al. (2013) Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury. Arterioscler Thromb Vasc Biol 33:805-13
Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin et al. (2013) Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes 62:3839-50

Showing the most recent 10 out of 42 publications