Hemophilia A is an inherited bleeding disorder caused by deficiency of Factor VIII, a blood coagulation protein that functions as a cofactor in the coagulation cascade. It is transmitted as a defect on the X chromosome and affects 1 male in 5000. Recent advances in biotechnology and protein engineering, together with cloning of the gene coding for Factor VIII, have made it feasible to manufacture recombinant human Factor VIII (rAHF). The recombinant preparation promises to be a source of unlimited supply, together with the freedom from the complications of transmission of blood-borne viruses. However, rAHF induces antibody type immune response or inhibitors. It has been shown that immune response for a therapeutic protein is caused by the existence of aggregates, frequent administration and existence of natural antibodies for specific epitope region of the protein. Furthermore, a moderately-short circulating half-time limits the duration of pharmacological effect. The overall goal of this proposal is to develop a lipid-based delivery vehicle for AHF to overcome the immune response and extend circulating halflife (Inhibitor Treatment for Hemophilia using Lipid Protein System, ITHELPS). The rationale to use lipidic protein complexes is three fold: (1) the epitope region of the protein binds to phospholipids, and thus by engineering a lipid-protein complex one could shield the epitope region; (2) the lipidic components can interact with intermediate structures in the unfolding/denaturation pathway, thus stabilizing protein structure during storage and reconstitution, thereby avoiding protein aggregate formation, and (3) the lipid-protein complexes, analogous to liposomal particles, may increase the circulation half-life of the rAHF, thus reducing the frequency of administration. In support of these hypotheses, preliminary studies were carried out to develop rationally a lipidic rAHF. The liposomal vesicles stabilized the protein against aggregation and a prototype formulation with lipidic rAHF was achieved. We propose to characterize the molecular topology, pharmacokinetic behavior and immune response of this novel, rationally developed lipidic rAHF. Further, we propose to investigate liposomal clearance mechanisms, including endocytosis and its role in altering the circulation time and immune response of lipidic rAHF. We also propose to study the epitope specificity of rAHF antibodies and the mechanism of immune response.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL070227-01
Application #
6463657
Study Section
Pharmacology A Study Section (PHRA)
Program Officer
Link, Rebecca P
Project Start
2002-04-01
Project End
2006-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
1
Fiscal Year
2002
Total Cost
$188,947
Indirect Cost
Name
State University of New York at Buffalo
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Glassman, Fiona Y; Balu-Iyer, Sathy V (2018) Subcutaneous administration of Lyso-phosphatidylserine nanoparticles induces immunological tolerance towards Factor VIII in a Hemophilia A mouse model. Int J Pharm 548:642-648
Schneider, Jennifer L; Dingman, Robert K; Balu-Iyer, Sathy V (2018) Lipidic Nanoparticles Comprising Phosphatidylinositol Mitigate Immunogenicity and Improve Efficacy of Recombinant Human Acid Alpha-Glucosidase in a Murine Model of Pompe Disease. J Pharm Sci 107:831-837
Turner, Michael R; Balu-Iyer, Sathy V (2018) Challenges and Opportunities for the Subcutaneous Delivery of Therapeutic Proteins. J Pharm Sci 107:1247-1260
Glassman, Fiona Y; Schneider, Jennifer L; Ramakrishnan, Radha et al. (2018) Phosphatidylserine Is Not Just a Cleanup Crew but Also a Well-Meaning Teacher. J Pharm Sci 107:2048-2054
Shenoy, Gautam N; Loyall, Jenni; Berenson, Charles S et al. (2018) Sialic Acid-Dependent Inhibition of T Cells by Exosomal Ganglioside GD3 in Ovarian Tumor Microenvironments. J Immunol 201:3750-3758
Shenoy, Gautam N; Loyall, Jenni; Maguire, Orla et al. (2018) Exosomes Associated with Human Ovarian Tumors Harbor a Reversible Checkpoint of T-cell Responses. Cancer Immunol Res 6:236-247
Shetty, Krithika A; Kosloski, Matthew P; Mager, Donald E et al. (2016) Factor VIII associated with lipidic nanoparticles retains efficacy in the presence of anti-factor VIII antibodies in hemophilia A mice. Biopharm Drug Dispos 37:409-420
Ramakrishnan, Radha; Balu-Iyer, Sathy V (2016) Effect of Biophysical Properties of Phosphatidylserine Particle on Immune Tolerance Induction Toward Factor VIII in a Hemophilia A Mouse Model. J Pharm Sci 105:3039-3045
Shetty, Krithika A; Merricks, Elizabeth P; Raymer, Robin et al. (2016) Soy Phosphatidylinositol-Containing Lipid Nanoparticle Prolongs the Plasma Survival and Hemostatic Efficacy of B-domain-Deleted Recombinant Canine Factor VIII in Hemophilia A Dogs. J Pharm Sci 105:2459-64
Schneider, Jennifer L; Balu-Iyer, Sathy V (2016) Phosphatidylserine Converts Immunogenic Recombinant Human Acid Alpha-Glucosidase to a Tolerogenic Form in a Mouse Model of Pompe Disease. J Pharm Sci 105:3097-3104

Showing the most recent 10 out of 52 publications