Cardiovascular disease is the leading cause of mortality in the Western world and its clinical manifestations result in large part from atherosclerotic lesion development, progression and destabilization. Oxidized low density lipoprotein (OxLDL) is a key pro-atherogenic molecule which induces a variety of cellular responses in the vascular wall and potentially in circulating cells, including increased oxidative/nitrosative stress, endothelial damage, transformation of macrophages into foam cells and apoptosis of smooth muscle cells (SMC). OxLDL downregulation of vascular insulin-like growth factor-1 (IGF-1) and IGF-1 receptors may play an important role in increased apoptosis and depletion of SMC in atherosclerotic plaque, contributing to plaque destabilization. IGF-1 infusion in rodents increases circulating endothelial progenitor cells, reduces circulating cytokines, upregulates endothelial nitric oxide synthase and reduces atherosclerotic plaque burden. These findings suggest that IGF-1 may also alter plaque composition to a more stable and less inflammatory phenotype. The long-term role of this project is to understand how IGF-1 impacts atherosclerotic plaque development and stability by obtaining insights into its anti-oxidant, anti-inflammatory and pro-repair effects.
Specific aims are to: 1. Demonstrate that IGF-1 reduces atherosclerosis via an anti-oxidant effect that includes induction of endothelial nitric oxide synthase expression and activity, reduction in inflammatory cytokines and prevention of foam cell formation. 2. Demonstrate that IGF-1 reduces atherosclerosis via its ability to promote vascular repair by stimulating the recruitment of vascular progenitor cells, including endothelial progenitor cells (EPC). 3. Demonstrate that the anti-atherosclerotic effects of IGF-1 are mediated via endocrine and autocrine/ paracrine mechanisms. These studies will provide key mechanistic insights into the effects of IGF-1 on the pathophysiology of atherosclerosis and provide a rationale for new therapies targeted at improving the clinical outcome and quality of life of patients afflicted with coronary, peripheral vascular and cerebrovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL070241-08
Application #
7893785
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Ershow, Abby
Project Start
2002-04-01
Project End
2011-11-30
Budget Start
2010-08-01
Budget End
2011-11-30
Support Year
8
Fiscal Year
2010
Total Cost
$372,500
Indirect Cost
Name
Tulane University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Kim, Seong Chul; Boese, Austin C; Moore, Matthew H et al. (2018) Rapid estrogen receptor-? signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice. Am J Physiol Heart Circ Physiol 314:H330-H342
Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung et al. (2018) SM22? (Smooth Muscle Protein 22-?) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 38:2306-2317
Hou, Xuwei; Snarski, Patricia; Higashi, Yusuke et al. (2017) Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair enzyme apurinic/apyrimidinic endonuclease I protect smooth muscle cells against oxidant-induced cell death. FASEB J 31:3179-3192
Yoshida, Tadashi; Delafontaine, Patrice (2016) An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure. J Biol Chem 291:25578-25590
Higashi, Yusuke; Sukhanov, Sergiy; Shai, Shaw-Yung et al. (2016) Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice. Circulation 133:2263-78
Sakamuri, Siva S V P; Valente, Anthony J; Siddesha, Jalahalli M et al. (2016) TRAF3IP2 mediates aldosterone/salt-induced cardiac hypertrophy and fibrosis. Mol Cell Endocrinol 429:84-92
Somanna, Naveen K; Valente, Anthony J; Krenz, Maike et al. (2016) The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4. J Cell Physiol 231:1130-41
Delafontaine, Patrice; Yoshida, Tadashi (2016) THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES. Trans Am Clin Climatol Assoc 127:245-258
Sakamuri, Siva Sankara Vara Prasad; Higashi, Yusuke; Sukhanov, Sergiy et al. (2016) TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 252:153-160
Yoshida, Tadashi; Delafontaine, Patrice (2015) Mechanisms of Cachexia in Chronic Disease States. Am J Med Sci 350:250-6

Showing the most recent 10 out of 62 publications