Despite advances in the management of the patient with traumatic injury, a large number of such patients die of severe hypovolemia and circulatory collapse due to blood loss. The high mortality may be reduced by a better understanding of mediators responsible for the transition from reversible hypovolemia to circulatory shock so that modulation of these factors can prevent progressive cell and organ damage. Our results indicate that the vascular responsiveness to a recently-reported potent vasodilatory peptide, adrenomedullin (AM), is depressed following hemorrhage. The reduction of a novel AM binding protein (AMBP-1) appears to contribute to the vascular AM hyporesponsiveness. In addition, administration of AM/AMBP-1 in combination with fluid resuscitation improves cardiovascular responses and attenuates organ injury after hemorrhage. We therefore hypothesize that vascular AM hyporesponsiveness due to decreased AMBP-1 likely plays a major role in producing hypovolemic circulatory collapse after hemorrhage. We also hypothesize that administration of AM/AMBP-1 will prevent the transition from the reversible to irreversible hypovolemic shock and will reduce hypovolemia-indueed organ injury and mortality. A rat model of hemorrhage-induced hypovolemia will be used in our 3 specific aims.
Aim I : To elucidate mechanisms responsible for producing vascular AM hyporesponsiveness after hypovolemia. We will examine the effects of hemorrhage on AMBP-1 biosynthesis, its binding capacity, AM activity, and AM receptors. The role of proinflammatory cytokines will be determined. Studies are also proposed to examine whether Kupffer cell activation suppresses hepatic AMBP-1 biosynthesis.
Aim II : To determine whether delayed administration of AM/AMBP-1 and/or in combination with a reduced volume of resuscitation fluid has any beneficial effects on cell and organ function and survival.
Aim III : To investigate mechanisms responsible for beneficial effects of AM/AMBP-1 in hemorrhage-induced hypovolemia. We will examine whether AM/AMBP-1 affects AM receptor and its binding capacity, signal transduction pathways, vascular endothelial cell function, apoptosis, and shedding. The role of proinflammatory and anti-inflammatory cytokines in producing beneficial effects of AM/AMBP-1 will also be tested. The proposed studies will provide useful and novel information which will allow us not only to better understand the mechanisms responsible for the transition from reversible hypovolemia to circulatory collapse after severe blood loss, but also to improve cell and organ function and prevent hypovolemia-induced mortality.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL076179-03
Application #
7002280
Study Section
Special Emphasis Panel (ZHL1-CSR-I (F1))
Program Officer
Liang, Isabella Y
Project Start
2004-02-01
Project End
2008-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
3
Fiscal Year
2006
Total Cost
$392,553
Indirect Cost
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
McGinn, Joseph T; Aziz, Monowar; Zhang, Fangming et al. (2018) Cold-inducible RNA-binding protein-derived peptide C23 attenuates inflammation and tissue injury in a murine model of intestinal ischemia-reperfusion. Surgery 164:1191-1197
Chen, Linsong; Zhao, Yanfeng; Lai, Dengming et al. (2018) Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 9:597
Li, Zhi-Gang; Scott, Melanie J; Brzóska, Tomasz et al. (2018) Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Mil Med Res 5:24
Jiao, Yang; Li, Zhigang; Loughran, Patricia A et al. (2018) Frontline Science: Macrophage-derived exosomes promote neutrophil necroptosis following hemorrhagic shock. J Leukoc Biol 103:175-183
Fan, Erica K Y; Fan, Jie (2018) Regulation of alveolar macrophage death in acute lung inflammation. Respir Res 19:50
Bolognese, Alexandra C; Sharma, Archna; Yang, Weng-Lang et al. (2018) Cold-inducible RNA-binding protein activates splenic T cells during sepsis in a TLR4-dependent manner. Cell Mol Immunol 15:38-47
McGinn, Joseph; Zhang, Fangming; Aziz, Monowar et al. (2018) The Protective Effect of A Short Peptide Derived From Cold-Inducible RNA-Binding Protein in Renal Ischemia-Reperfusion Injury. Shock 49:269-276
Cen, Cindy; Aziz, Monowar; Yang, Weng-Lang et al. (2017) Osteopontin Blockade Attenuates Renal Injury After Ischemia Reperfusion by Inhibiting NK Cell Infiltration. Shock 47:52-60
Cen, Cindy; McGinn, Joseph; Aziz, Monowar et al. (2017) Deficiency in cold-inducible RNA-binding protein attenuates acute respiratory distress syndrome induced by intestinal ischemia-reperfusion. Surgery 162:917-927
Li, Zhigang; Fan, Erica K; Liu, Jinghua et al. (2017) Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma. Cell Death Dis 8:e2775

Showing the most recent 10 out of 65 publications