Cardiac fibrosis is a major biological determinant in a variety of cardiac diseases including hypertrophy, heart failure, severe arrhythmias and sudden cardiac death. Early interference with fibroblast proliferation to limit fibrosis should be able to prevent fibrogenesis from further perpetuating cardiac diseases. However, Ca2+ signaling mechanisms in cardiac fibroblasts (CFs) have remained elusive. Our long-term goal is to investigate the Ca2+ signaling mechanisms in CFs and their potential roles in fibrotic heart diseases. We have previously cloned a novel bi-functional Ca2+-permeable ion channel TRPM7. Our recent preliminary data showed that: 1) TRPM7 is likely the molecular basis of native TRPM7L, the only Ca2+-permeable ion channel identified in the CFs to date; 2) TRPM7 inward currents can be drastically enhanced by a decrease in extracellular pH; 3) oxidative stress significantly increased TRPM7 inward currents; 4) chronic exposure to TGFb1 up-regulates TRPM7 expression in CFs. Given that acidosis, oxidative stress, and TGFb1 are potent stimuli in initiating fibrogenesis during myocardial injury/infarction, we hypothesize that TRPM7L is essential for Ca2+ signaling in CFs, and plays important roles in myocardial ischemia/infarction initiated fibrogenesis. We propose to: 1) determine if TRPM7 is the molecular basis of TRPM7L, and if TRPM7L underlies Ca2+ signaling mechanisms in CFs under oxidative stress and acidosis stimuli; 2) investigate if chronic fibrogenesis stimuli up-regulate TRPM7L; 3) determine if TRPM7L is essential for CFs' functions in responses to fibrogenesis stimuli. Patch-clamp, Ca2+ imaging, biochemical methods and gene knock-down will be used in this project to reveal the potential roles of TRPM7L-mediated Ca2+ signals in fibrogenesis cascade events. The results of the proposed studies will lead to a future in vivo study which is designed to evaluate potential roles of TRPM7 in cardiac fibrosis using TRPM7 knock out mice, and will ultimately provide clinical insights into therapeutic approaches for fibrosis associated cardiac diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL078960-02
Application #
7077778
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Przywara, Dennis
Project Start
2005-06-15
Project End
2010-05-31
Budget Start
2006-06-01
Budget End
2007-05-31
Support Year
2
Fiscal Year
2006
Total Cost
$361,305
Indirect Cost
Name
University of Connecticut
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Curry, Eli J; Ke, Kai; Chorsi, Meysam T et al. (2018) Biodegradable Piezoelectric Force Sensor. Proc Natl Acad Sci U S A 115:909-914
Park, Jung Woo; Yan, Li; Stoddard, Chris et al. (2017) Recapitulating and Correcting Marfan Syndrome in a Cellular Model. Int J Biol Sci 13:588-603
Yu, Hao; Kistler, Andreas; Faridi, Mohd Hafeez et al. (2016) Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria. J Am Soc Nephrol 27:3308-3319
Zeng, Hui; Guo, Min; Zhou, Ting et al. (2016) An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell 19:326-40
Yue, Zhichao; Xie, Jia; Yu, Albert S et al. (2015) Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 308:H157-82
Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia et al. (2015) Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels. Sci Rep 5:16747
Cagavi, Esra; Bartulos, Oscar; Suh, Carol Y et al. (2014) Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation. PLoS One 9:e110752
Qin, Xin; Yue, Zhichao; Sun, Baonan et al. (2013) Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol 168:1294-312
Yue, Zhichao; Zhang, Yanhui; Xie, Jia et al. (2013) Transient receptor potential (TRP) channels and cardiac fibrosis. Curr Top Med Chem 13:270-82
Lee, Min Young; Sun, Baonan; Schliffke, Simon et al. (2012) Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Res 8:49-57

Showing the most recent 10 out of 23 publications