Numerous studies examining atherosclerotic lesions from human and animal models have established the central role of the macrophage in atherosclerosis. Despite these observations, it is still unclear how the multiple pro- and anti-inflammatory capabilities of the macrophage are balanced within lesions. One potentially important mechanism for them to regulate their function is by the rapid modulation of the repertoire of proteins expressed on their cell surface through proteolytic """"""""shedding"""""""". In addition to dynamically altering the cell surface constituents, shedding also leads to the release of soluble ectodomains with distinct biological properties. This proposal will focus on the ADAM family of proteases that have gained recognition as primary effectors of ectodomain shedding. Early lesions of atherosclerosis are characterized by lipid-filled macrophages. Scavenger receptors are responsible for this massive accumulation of cholesterol, and their significance for atherogenesis is highlighted by multiple gene knockout studies. Fas ligand (FasL) is a key regulator of macrophage apoptosis and activation. Both scavenger receptors and FasL can be proteolytically cleaved from the cell surface, and their proteolytic shedding could modulate lesion progression. However, the enzymes responsible for their shedding have not been fully characterized.
In Aim 1, we will determine the proteases involved in the shedding of scavenger receptors and FasL, and the functional significance of shedding on atherogenesis will be examined by expressing uncleavable mutants of these substrates in Aim 3. Macrophage activation is observed at all stages of lesion development, and induces the shedding of a multitude of inflammatory proteins. ADAM17 has been shown to be responsible for the shedding of a large number of inflammatory mediators, but the mechanisms that underlie the activation of ADAM17 are poorly understood.
In Aim 2, the role played by oxidants in regulating the activity of ADAM17 will be investigated. Finally in Aim 3, we will test the role of ADAM17 in lesion initiation, progression and plaque rupture by genetically modulating its expression in macrophages.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL079273-01
Application #
6861526
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Wassef, Momtaz K
Project Start
2005-01-01
Project End
2005-12-31
Budget Start
2005-01-01
Budget End
2005-12-31
Support Year
1
Fiscal Year
2005
Total Cost
$379,000
Indirect Cost
Name
University of Washington
Department
Pathology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Garton, Kyle J; Gough, Peter J; Raines, Elaine W (2006) Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol 79:1105-16