During last funding period, we have found that reactive nitrogen species such as peroxynitrite (ONOO-) uncouples endothelial nitric oxide synthase (eNOS) {generates superoxide anions (O2.-) or ONOO- instead of nitric oxide (NO)} and that eNOS uncoupling in diabetes causes accelerated atherosclerosis. Further, we found that tetrahydrobiopterin (BH4) deficiency, an essential cofactor for eNOS, is the key in the development of eNOS uncoupling in diabetes. Finally, we report that BH4 deficiency is due to rapid degradation of GTP cyclohydrolase I (GTPCH1; E.C. 3.5.4.16), the rate-limiting enzyme in BH4 de novo synthesis, by ubiquitin-proteasome system (UPS) in endothelial cells. However, why GTPCH1 is affected by diabetes hasn't been addressed. Thus, this project will test the hypothesis that oxidation of the zinc-binding structures of GTPCH1 inactivates the enzyme resulting in BH4 deficiency with consequent eNOS uncoupling in diabetes.
Aim 1 is establish the essential role of zinc in maintaining GTPCH1 activity and stability and if oxidative disruption of the zinc-cysteine- histidine complexation in GTPCH1 enhances ubiquitination and consequent proteasomal degradation.
Aim 2 is to investigate the molecular mechanisms by which hyperglycemia inhibits GTPCH1 in endothelial cells.
Aim 3 is to determine the contributions of ONOO--induced GTPCH1 inhibition and ubiquitination in diabetes-enhanced atherosclerosis in mouse models of atherosclerosis in vivo. We believe that the proposed studies will provide novel information as to how the metabolic stress associated with diabetes causes damage to the endothelium and how the endothelial cell attempts to protect itself against these stresses and whether scavenging ONOO- is an effective therapy for diabetes.

Public Health Relevance

Published data and preliminary data included in this competitive renewal application demonstrate that eNOS uncoupling causes accelerated atherosclerosis in type 1 diabetes. How diabetes uncouples eNOS is unknown. GTPCH1 is the rate-limiting enzyme for the synthesis of tetrahydrobiopterin, an essential co-factor for eNOS. The goal of this competitive renewal application is to determine 1) how diabetes inhibits GTPCH1; and 2) to determine the contribution of GTPCH1 inhibition in diabetes-enhanced atherosclerosis in mouse models of atherosclerosis in vivo.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL079584-15
Application #
9208783
Study Section
Special Emphasis Panel (ZRG1-VH-B (03)M)
Program Officer
Liu, Lijuan
Project Start
2004-09-30
Project End
2018-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
15
Fiscal Year
2017
Total Cost
$378,750
Indirect Cost
$128,750
Name
Georgia State University
Department
Miscellaneous
Type
Organized Research Units
DUNS #
837322494
City
Atlanta
State
GA
Country
United States
Zip Code
30302
Yu, Xi-Yong; Song, Ping; Zou, Ming-Hui (2018) Obesity Paradox and Smoking Gun: A Mystery of Statistical Confounding? Circ Res 122:1642-1644
Wang, Bei; Nie, Jiali; Wu, Lujin et al. (2018) AMPK?2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circ Res 122:712-729
Lu, Qiulun; Xie, Zhonglin; Yan, Chenghui et al. (2018) SNRK (Sucrose Nonfermenting 1-Related Kinase) Promotes Angiogenesis In Vivo. Arterioscler Thromb Vasc Biol 38:373-385
Han, Young-Min; Bedarida, Tatiana; Ding, Ye et al. (2018) ?-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. Mol Cell 71:1064-1078.e5
Okon, Imoh; Ding, Ye; Zou, Ming-Hui (2017) Ablation of Interferon Regulatory Factor 3 Promotes the Stability of Atherosclerotic Plaques. Hypertension 69:407-408
Dai, Xiaoyan; Okon, Imoh; Liu, Zhaoyu et al. (2017) Ablation of Neuropilin 1 in Myeloid Cells Exacerbates High-Fat Diet-Induced Insulin Resistance Through Nlrp3 Inflammasome In Vivo. Diabetes 66:2424-2435
Song, Ping; Ramprasath, Tharmarajan; Wang, Huan et al. (2017) Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci 74:2899-2916
Zhang, W; Ding, Y; Zhang, C et al. (2017) Deletion of endothelial cell-specific liver kinase B1 increases angiogenesis and tumor growth via vascular endothelial growth factor. Oncogene 36:4277-4287
Ding, Ye; Zou, Ming-Hui (2017) AMP-Activated Protein Kinase ?2 to the Rescue in Ischemic Heart. Circ Res 121:1113-1115
Dai, Xiaoyan; Okon, Imoh; Liu, Zhaoyu et al. (2017) A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis. FASEB J 31:2881-2892

Showing the most recent 10 out of 107 publications