Calcification is ubiquitous in vascular disease, and contributes significantly to morbidity and mortality. Matrix GLA protein (MGP) is an alleged calcification inhibitor that is up-regulated in atherosclerotic lesions. Deletion of the MGP gene results in arterial calcification and in morphological abnormalities in mice and humans. MGP is a secreted protein that is modified by vitamin K-dependent g-carboxylation. When isolated from bone, it is processed and lacks seven C-terminal amino acids. The mechanism of MGP is poorly understood. However, our experimental data points to a role in transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling. The data suggest a potential link between BMP and TGF-beta in that BMP2 and BMP-4 induce expression of the TGF-beta, receptor Activin-like Kinase receptor 1 (ALK1). Signaling through ALK1 induces MGP, which provides negative feedback regulation for BMP. Interactions between MGP and specific receptors were also observed. Three hypotheses will be tested in this grant. The first hypothesis is that MGP regulates TGF-beta and BMP signaling at the receptor level, resulting in altered SMAD signaling and gene expression. We will characterize activation of SMAD signaling and relevant reporter genes induced by TGF-beta, BMP-2 and BMP-4 in presence of MGP, and identify the TGF-beta / BMP receptors that are regulated by MGP. The second hypothesis is that MGP participates in specific protein-protein interactions that may be altered by C-terminal processing. We will characterize the interactions, which include the TGF-beta receptors, using specific immunoprecipitation in combination with a general proteomic approach. The third hypothesis is that MGP functions as a BMP inhibitor in developing arteries and in atherosclerotic lesions. We will generate a transgenic mouse for targeted, conditional expression of the BMP-inhibitor Noggin. Noggin expression will be induced in MGP null mice in attempt to replace MGP and abolish calcification. The effect of Noggin will also be determined in atherosclerotic lesions in LDL-receptor null mice. Our results will add insight to calcification of vessels and heart valves, a common problem in heart disease. In addition, it may provide information on how to design new treatments for unwanted calcification.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Srinivas, Pothur R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Internal Medicine/Medicine
Schools of Medicine
Los Angeles
United States
Zip Code
Boström, Kristina I; Yao, Jiayi; Wu, Xiuju et al. (2018) Endothelial Cells May Have Tissue-Specific Origins. J Cell Biol Histol 1:
Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan et al. (2018) Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 233:1812-1822
Yao, Jiayi; Guihard, Pierre J; Wu, Xiuju et al. (2017) Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 216:3369-3385
Guihard, Pierre J; Yao, Jiayi; Blazquez-Medela, Ana M et al. (2016) Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS One 11:e0167936
Boström, Kristina I; Yao, Jiayi; Guihard, Pierre J et al. (2016) Endothelial-mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis 253:124-127
Boström, Kristina I (2016) Where do we stand on vascular calcification? Vascul Pharmacol 84:8-14
Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M et al. (2016) Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 19:1-7
Boström, Kristina I; Guihard, Pierre; Blazquez Medela, Ana M et al. (2015) Matrix Gla protein limits pulmonary arteriovenous malformations in ALK1 deficiency. Eur Respir J 45:849-52
Jumabay, Medet; Boström, Kristina I (2015) Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 7:1202-14
Demer, Linda L; Boström, Kristina I (2015) Conflicting forces of warfarin and matrix gla protein in the artery wall. Arterioscler Thromb Vasc Biol 35:9-10

Showing the most recent 10 out of 33 publications