The luminal diameter of muscular arteries and arterioles of the microcirculation is the principal site of control of vascular resistance. These small blood vessels are significant regulators of blood pressure and local blood flow distribution, and impaired control of their luminal diameter is a major contributor to cardiovascular-related diseases. Vascular smooth muscle cell membrane potential depolarization is central to the actions of vasoconstrictors, including intravascular pressure. Despite considerable investigation, the mechanisms underlying membrane potential depolarization remain obscure. In this proposal, we will examine the novel concept that activation of the melastatin transient receptor potential (TRP) channel TRPM4 in arterial myocytes integrates signals activated by vasoconstrictor stimuli to cause membrane potential depolarization. Evidence is provided that activation of TRPM4 channels causes membrane depolarization, Ca2+ influx via voltage-dependent Ca2+ channels, and vasoconstriction. Thus, TRPM4 appears to be an important mediator of smooth muscle cell depolarization. As such, an increase in TRPM4 activity or channel number could contribute to vascular pathologies such as hypertension, which are characterized by smooth muscle membrane potential depolarization and vasoconstriction. TRPM4 therefore presents an attractive target for drug-discovery efforts, but currently, little is known about how activity of the channel is controlled under physiological conditions. Phospholipase C (PLC), protein kinase C (PKC), and intracellular Ca2+ dynamics contribute to the control of arterial tone in vivo, and are thought to be important regulators of TRPM4. This proposal will address the central hypothesis that these factors elicit vasoconstriction, in part, by modulating the activity of TRPM4. Experiments are proposed that will use patch-clamp electrophysiology and live-cell confocal imaging experiments to elucidate how TRPM4 activity is regulated by PLC and PKC activity in vascular smooth muscle cells (Specific Aim 1), and by dynamic Ca2+ events involving IP3-mediated Ca2+ release from intracellular stores (Specific Aim 2).
Specific Aim 3 will extend these studies to the level of the intact vasculature and investigate the role of PLC, PKC, and Ca2+-dependent regulation of TRPM4 in pressure and agonist-induced vasoconstriction. These experiments will utilize intact cerebral arteries for intracellular microelectrode recordings of smooth muscle membrane potential confocal Ca2+ imaging, and simultaneous contractile and Ca2+ imaging studies. Additional experiments will employ siRNA technology to suppress TRPM4 expression in intact blood vessels. The outcome of these experiments will significantly enhance our understanding of the role of TRPM4 in blood pressure and blood flow regulation, findings that will contribute to the development of novel therapies for the treatment of cardiovascular-related diseases.

Public Health Relevance

Experiments described in this proposal will examine how TRPM4, an ion channel protein present in smooth muscle cells that line the walls of blood vessels, controls the diameter of small arteries and arterioles. This is important because these small blood vessels regulate blood flow and pressure, and impaired control of their diameter contributes to cardiovascular-related disease, such as hypertension, stroke, and coronary artery disease. The ultimate goal of this project is to improve human health by stimulating the development of new pharmaceuticals that act through TRPM4 to control and prevent cardiovascular-related diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL091905-02
Application #
7754061
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Thrasher, Terry N
Project Start
2009-01-01
Project End
2013-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
2
Fiscal Year
2010
Total Cost
$364,968
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Peng, Hua; Jensen, Dane D; Li, Wencheng et al. (2018) Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 314:H580-H592
Pires, Paulo Wagner; Earley, Scott (2018) Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. Elife 7:
Zheng, Haifeng; Drumm, Bernard T; Earley, Scott et al. (2018) SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract. Sci Signal 11:
Pritchard, Harry A T; Pires, Paulo W; Yamasaki, Evan et al. (2018) Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 115:E9745-E9752
Pires, Paulo Wagner; Earley, Scott (2017) Redox regulation of transient receptor potential channels in the endothelium. Microcirculation 24:
Pritchard, Harry A T; Gonzales, Albert L; Pires, Paulo W et al. (2017) Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Sci Signal 10:
Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T et al. (2017) The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. J Physiol 595:4735-4753
Pires, Paulo Wagner; Earley, Scott (2016) A TRPC3 signalling complex promotes cerebral artery remodelling during hypertension. Cardiovasc Res 109:4-5
Pires, Paulo W; Dabertrand, Fabrice; Earley, Scott (2016) Isolation and Cannulation of Cerebral Parenchymal Arterioles. J Vis Exp :
Pires, Paulo W; Earley, Scott (2016) No Static at All: Tuning Into the Complexities of Ca2+ Signaling in the Endothelium. Circ Res 118:1042-4

Showing the most recent 10 out of 46 publications