Deep venous thrombosis (DVT) and secondary pulmonary embolism (together, VTE) affect 900,000 Americans, and result in >60,000 deaths each year. A growing body of evidence supports the concept of crosstalk between inflammation and coagulation which amplifies the thrombo-inflammatory response in VTE. Activated, injured, and dying cells release nucleotides that form purinergic halo of ?danger? signals that disrupt vascular homeostasis. Located on the surface of leukocytes and the endothelium, the vascular ectonucleotidase, CD39 rapidly phosphohydrolyzes ATP, and ADP to extinguish these ?danger? signals and promote homeostasis. We have found that CD39 is a potent suppressor of the thrombo-inflammatory response in DVT. Our new preliminary data show that CD39 inhibits circulating leukocyte-platelet interactions, and restricts activation of programmed innate immune responses, including inflammasome assembly and neutrophil extracellular trap (NET) formation, key drivers of the growing thrombus. The hypothesis driving this work is that CD39 provides a critical vascular checkpoint at the intersection of innate immunity and thrombosis to arrest the relentless venous thrombo-inflammatory cycle. Using unique cell lineage (myeloid, neutrophil, endothelial)-specific CD39 gene-deleted mice we have generated, and complementary models of DVT, we will: 1) Elucidate the role for CD39 on cellular recruitment during venous thrombogenesis and maturation. These experiments will define the effect of lineage-specific CD39 on blood cell recruitment, and the spatial dynamics of their interactions during venous thrombogenesis; 2) Determine the mechanism(s) by which myeloid CD39 protects against venous thrombo-inflammation. These experiments will determine the contributions of macrophage and neutrophil CD39 to venous thrombosis. Complementary in vitro and in vivo studies with genetically-modified mice will elucidate the molecular signaling processes by which CD39 inhibits inflammasome activation during thrombogenesis; 3) Determine the effect of CD39-deficiency on microvesicle phenotype, function, and kinetics, during venous thrombosis. These studies will reveal the functional consequences of altering global- and lineage-specific CD39 on microvesicle-mediated thrombo-inflammatory signaling. These studies should yield new insights into how an ectonucleotidase that functions as a checkpoint at the intersection of thrombosis and inflammation may be exploited to improve treatments in venous thrombosis.

Public Health Relevance

Deep venous thrombosis (DVT, clots that form in the deep veins of the arms or legs) and its complication, pulmonary embolism, is the third leading cardiovascular cause of death in the United States. Although inflammation is increasingly recognized as a precursor to the development of venous thrombosis, treatments for DVT do not treat inflammation. This proposal examines a natural mechanism by which an enzyme that coats cells in the bloodstream protects against DVT by dispersing harmful inflammatory molecules involved in clot formation and extension, with the ultimate goal of developing more effective and safe treatment approaches in this devastating disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL150392-01
Application #
9868727
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Kindzelski, Andrei L
Project Start
2020-03-05
Project End
2025-02-28
Budget Start
2020-03-05
Budget End
2021-02-28
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109